SEVENTH YEAR ANNUAL REPORT # INTERSTATE POLLUTION CONTROL/ROTO-ROOTER SUPERFUND SITE Winnebago County Rockford, Illinois ## Prepared for: Interstate Pollution Control/Roto-Rooter Superfund Site Remedial Design/Remedial Action Steering Committee Prepared by: Environmental Information Logistics, LLC 446 S. Hawthorne Avenue Elmhurst, IL 60126 ## TABLE OF CONTENTS | 1.0 INTRODU | <u> CTION </u> | 1 | |--------------------|--|-----| | 1.1 SITE DES | SCRIPTION AND BACKGROUND | 1 | | | Description | | | 1.1.2 Con | stituents of Concern (COCs) | 2 | | | ent of Groundwater Impacts | | | 1.1.4 Rem | nediation | 5 | | | ICAL ANALYSIS PLAN | | | <u>1.3</u> FIFTH Y | EAR ANNUAL REPORT (FIVE-YEAR REVIEW REPORT) OVERVIEW | 8 | | 2.0 EVALUA | TION OF SITE GROUNDWATER QUALITY | 9 | | | OUNDWATER MONITORING NETWORK | | | | VELLS | | | | s of Ongoing Natural Attenuation Groundwater Monitoring | | | | radient Site Groundwater Quality | | | | yngradient Site Groundwater Quality | | | | vngradient River Well Groundwater Quality | | | | lity Assurance/Quality Control Issues | | | _ | ATIVE SOURCE DEMONSTRATION FOR COCS DETECTED I | | | SITE MONITO | ORING WELLS MW1 AND MW4 | 13 | | - | | | | | S OF NATURALLY OCCURRING DISSOLVED METHANE | | | | E SOURCES OF DISSOLVED METHANE | | | 4.0 SUMMAR | RY AND CONCLUSIONS | 16 | | | | | | | List of Attachments | | | Attachment 1 | Site Location and Detail Maps | | | Attachment 2 | Figure Showing the Locations of the Long-Term Natural Attenuat | ion | | | Monitoring Wells | | | Attachment 3 | Laboratory Data Reports | | | Attachment 4 | Data Summary Table | | | Attachment 5 | COC Concentration Time Trends | | | Attachment 6 | Data Validation Summaries | | | Attachment 7 | Total VOC Load Concentration Time Trends | | | Attachment 8 | Total VOC Load Trends (1,1,1-TCA plus TCE only) | | ## 1.0 INTRODUCTION This Seventh Year Annual Report ("report") was prepared by Environmental Information Logistics, LLC (EIL) on behalf of the Interstate Pollution Control/Roto-Rooter ("IPC") Superfund Site Remedial Design/Remedial Action Steering Committee. This report discusses the results of long-term natural attenuation monitoring through the second quarter (June) 2014 sampling event, and satisfies the requirements of the IEPA-approved Groundwater Monitoring Work Plan ("GWMP"), dated March 1, 2006, the IEPA-approved First Year Annual Report/Technical Memorandum ("Tech Memo"), dated August 28, 2008, and the Consent Decree (with Appendix B – Statement of Work (SOW)) with the State of Illinois, dated March 1, 2006. Section 6.0 of the IEPA-approved GWMP states the following: "Annual reports will be prepared and submitted to the IEPA within 45 days of completing each second semi-annual groundwater sampling event (except in years 1, 5, 10, 15, etc., as discussed above and below). Each of the annual reports will include a summary of groundwater data collected during the past year and will include an evaluation, based on the IEPA-approved statistical methodology, of the source of any statistically significant changes to groundwater quality. Where appropriate, the annual report may also recommend changes to the statistical methodology for future monitoring events." Section 6.0 of the IEPA-approved GWMP also states the following: "Five-year review reports will be submitted to the IEPA within 45 days of completing the second semi-annual sampling event at the end of each five-year cycle. Each five-year review report will include a cumulative summary of the results of statistical analysis of that data, and an evaluation of the source of any statistically significant changes to groundwater quality." This is the seventh annual report prepared since natural attenuation groundwater monitoring began at the site. This report includes an alternative source demonstration (ASD) to address the presence during this reporting period of 1,1-DCA and vinyl chloride in downgradient monitoring wells MW1 and MW4. ## 1.1 Site Description and Background ## 1.1.1 Site Description The Interstate Pollution Control Inc. (IPC) site ("the site") is located in an industrial area in the south central part of Rockford, Winnebago County, Illinois north west of Magnolia Peoples Avenue, as shown on the figure included in Attachment 1. The small (approximately 2.8 acre), irregularly-shaped site measures approximately 850 feet long along the north boundary line and 270 feet along the east boundary line. During IPC's operation of the site it contained, at various times, at least six underground storage tanks, one large above-ground storage tank, an unlined surface impoundment, a gas fired incinerator, and several structures. IPC's operation at the site included transporting and bulking of waste oils, solvents and cyanide waste for incineration, resale and/or off-site disposal. Also during IPC's operation of the site, support service was provided to two sister companies; a portable toilet business and a Roto-Rooter franchise. Prior to IPC's operations, the site was extensively quarried and backfilled with various materials including a large quantity of foundry sand. Following filling of the quarry and immediately prior to IPC's operations, the site was the location of an auto salvage yard. In 1991, private parties negotiated a Partial Consent Decree with the Illinois EPA and the Attorney General of the State of Illinois. The Partial Consent Decree required that the private parties ("Respondents") undertake a Remedial Investigation/Feasibility Study ("RI/FS") at the site. The RI Work Plan was completed in 1992, and the field investigations were conducted in 1993-1994. The final RI Report was submitted in 1997. Significant removal actions have occurred at the IPC site on two different occasions. The incinerator was removed between 1976 and 1979. IPC conducted partial cleanup of the site in 1979 and 1980, in response to an Illinois Pollution Control Board Order. During this partial cleanup of the site, several bulk tankers containing wastes, approximately 180 yds³ of material from the surface impoundment, and approximately 120 yd³ of cyanide-contaminated soils were removed. Reportedly, 1,200 drums of contaminated materials were also removed from the site during this cleanup. The surface impoundment was backfilled and graded. On August 6, 1991, the U.S. EPA issued a Unilateral Administrative Order ("UAO") to IPC and the Respondents to conduct additional removal activities at the site. Beginning in 1992, the Respondents to the UAO fenced the site, removed over 1,400 tons of solid and hazardous waste (including visibly stained soils), demolished and removed all above-ground and underground tanks and significant structures, installed a clay cover over the former impoundments, and substantially cleared the site. These removal actions eliminated more than 2.9 million pounds of solid and hazardous waste. These materials constituted principal threats at the site and were removed, treated, destroyed or disposed of prior to the initiation of the RI/FS. ## 1.1.2 Constituents of Concern (COCs) A total of 73 chemicals of potential concern ("COPCs") were identified originally in the RI based on previous detections in site soils and were selected for risk assessment. These included 11 volatile organic compounds ("VOCs"), 29 semi-volatile organic compounds ("SVOCs"), 14 pesticide/PCB compounds, 18 trace metals, and cyanide. In addition, a total of 33 chemicals previously detected in on-site groundwater were selected as COPCs. These included 11 VOCs, 10 SVOCs, one pesticide/PCB compound, 11 trace metals, and cyanide. A significantly reduced number of these COPCs were found to be risk drivers, as summarized in the "Risk Driving Chemicals of Potential Concern" table from Section V of the ROD. Based on the previously discussed contaminant removal activities and the installation of the engineered barrier, and as stated in Section 2.4 of the SOW, "VOCs are the sole constituents of concern" with respect to long term natural attenuation groundwater monitoring at the site. Section 2.4 of the SOW specifies that "...groundwater will be sampled for TCL VOC's only." during long term natural attenuation monitoring. In addition, paragraph XII of the Record of Decision (ROD) states "If during each Five Year Review cycle spastically [sic] significant decreases in on-site and down gradient concentrations of trichloroethene and 1,1,1-trichloroethane in shallow groundwater are not verified (which cannot be attributed to upgradient sources), the SVE design pilot test will be implemented." Seven VOCs were detected in site monitoring wells during the background data collection period and as reported in the August 28, 2008 First Year Annual Report/Technical Memorandum. These are: - 1,1,1-trichloroethane - 1,1-dichloroethane - 1,1-dichloroethene - cis-1,2-dichloroethene - tetrachloroethene - trichloroethane - vinyl chloride However, only four VOCs were proposed originally as site-specific COCs for long-term groundwater quality evaluation. Three VOCs, 1,1-dichloroethane, vinyl chloride, and cis-1,2-dichloroethene, were specifically not proposed as COCs because they were generally detected at elevated concentrations in downgradient monitoring wells and because there was, and continues to be, strong evidence to suggest that the downgradient concentrations were, and continue to be, biased due to an off-site source (i.e., landfill gas from the adjacent Peoples Avenue Landfill). However, IEPA's approval of the August 28, 2008 First Year Annual Report/Technical Memorandum was conditional based on the inclusion of all seven VOCs as COCs. Therefore, all seven of the VOCs detected during background data collection and as listed above are evaluated herein as COCs. ## 1.1.3 Extent of Groundwater Impacts Remedial investigation activities were conducted at the site to evaluate the nature and extent of contamination, and to assess environmental
impacts. Detailed results are provided in the *Final Remedial Investigation Report, Interstate Pollution Control Inc. Site, Rockford, Illinois* (Golder Associates Inc., December 1997). In general, site groundwater was found to be impacted with numerous organic and inorganic constituents from a combination of past site activities and from a number of upgradient sources. Some of the upgradient sources are being addressed under various regulatory actions and it appears that some are not. In addition, landfill gas from the adjacent Peoples Avenue Landfill was detected on-site and identified as another possible source of VOCs in groundwater. The site is located adjacent to the much larger Southeast Rockford Groundwater Contamination ("SER") site. The SER site began with the discovery of VOCs in groundwater within a residential area of nearly two square miles. The discovery prompted the USEPA to ultimately extend water mains and connect 526 residences to City water at a cost of approximately \$4 million. The SER site was then added to the National Priorities List ("NPL"). After further IEPA study, the SER site was expanded to a ten square mile study area ("SER Study Area") that incorporates almost 20 percent of the City and includes the IPC site. Studies have since indicated the widespread presence of chlorinated solvents in groundwater within this ten square mile area, in concentrations varying from less than 10 ppb to over 10,000 ppb. The SER ROD defines the boundary of the SER Site by the 10 ppb chlorinated VOC plume that extended to approximately 1,200 feet southeast of the IPC site at its closest point (as of 1993). It is reasonable to expect that parts of this plume have expanded to the extent that it now affects groundwater beneath the IPC site. As discussed in the 1999 site ROD, there are/were also a number of other known groundwater contaminant sources located near the IPC site. For example, the former Mattison Machine Works is located approximately 1,000 feet to the northeast (i.e., upgradient). Previous studies at Mattison Machine Works dating back to 1993 indicate that a plume containing PCE (up to 10,600 ug/L), TCE (up to 1,500 ug/L), and 1,1,1-TCA (up to 800 ug/L) is/was passing under that facility. These concentrations are much higher than are in groundwater at IPC. In addition, the Peoples Avenue Landfill, located immediately southeast of IPC, was previously identified as the likely source of groundwater contamination that contributed to the deterioration of groundwater quality in one of the City of Rockford's public supply wells (Municipal Well No. 14), ultimately resulting in the abandonment of the supply well in 1971, prior to operations at IPC. The Peoples Avenue Landfill is also a known source of landfill gas (including methane) migration that previously entered the basement of the former Quaker Oats pet food manufacturing plant, located just southwest of the IPC site. And, as reported previously, there is evidence to suggest that landfill gas has impacted site monitoring well MW-4, which is located between the IPC site and the Peoples Avenue Landfill. While remedial actions associated with some of the known sources within the SER Study Area are presently on-going, the IEPA and U.S. EPA have not specifically addressed some of the known groundwater contamination sources near to and upgradient of the IPC site. As indicated in the RI report and in the ROD, some of these sources contain elevated concentrations of VOCs, some of which are/were higher than those measured on-site. As noted in the ROD, "One of the most notable outcomes of the groundwater portion of the [RI] investigation was verification that a plume of chlorinated volatile organic compounds, at substantially higher concentrations than occur on site is approaching the site from the north east. The plume is expected to reach the IPC site in 15 to 45 years." This is significant because, given that the RI data collection activities were completed by 1994, the "plume" would have possibly reached the site as early as 2009, resulting in degradation of site groundwater quality that is completely unrelated to the performance of the selected remedy and which could be attributed mistakenly to the site. As such, the interpretation of the results of long term natural attenuation monitoring must take into account the potential for groundwater quality degradation due to off-site sources. This approach reduces the possibility of incorrectly concluding that the selected remedy is insufficient and that the remedy must be supplemented with soil vapor extraction. In fact, and as discussed in the First Year Annual Report/Technical Memorandum, subsequent annual reports, and the Five Year Review Report, an upgradient plume appears to have arrived at the site. This was acknowledged in an October 22, 2012 IEPA letter which stated: "Based on the data in the report [Five Year Review Report], it appears that an upgradient plume may have arrived at the site and the down gradient concentrations of the contaminants mentioned above [trichloroethene and 1,1,1-trichloroethane] are decreasing." While the source of the plume is unknown, it is likely that it is the same one previously reported under the Mattison Machine Works property, and it is possible that the SER Site plume has also expanded to the extent that it now affects groundwater quality at the IPC site. Regardless of the source, it is reasonable to expect that the plume will continue to migrate through the site until such time that the upgradient sources are either removed or isolated, eventually affecting the three downgradient site monitoring wells, and ultimately the two river wells. As such, there will likely be further groundwater quality degradation in the site monitoring wells and possible new groundwater quality degradation in the river wells that is completely unrelated to the site and to the performance of the selected remedy. Therefore, the statistical analysis plan was developed such that it allowed for recalculation of background standards (as appropriate) and/or adjustment of the evaluation protocol in order to reduce the likelihood of false positive statistical failure related to the off-site sources. Since it appears that the upgradient plume has arrived, and in accordance with the IEPA-approved GWMP and the IEPA-approved First Year Annual Report/Technical Memorandum, revised calculated background standards and statistical evaluation criteria were included in the Second Year Annual Report for selected COCs. This report, therefore, includes statistical evaluations that are consistent with those originally provided in the IEPA-approved GWMP and First Year Annual Report/Technical Memorandum and as modified by the Second Year Annual Report. #### 1.1.4 Remediation The IEPA selected the remedial alternative with the concurrence of the U.S. EPA and after a detailed analysis of the alternatives included in the approved Feasibility Study (FS). The selected remedial alternative addresses the principal threats by installation of an impermeable barrier over the site, placing institutional controls on future site uses, reinforcing existing city and state groundwater use restrictions, and addressing groundwater contamination resulting from the site by implementing a monitored natural attenuation program. The selected remedy also includes a soil vapor extraction component as a contingency should the IEPA conclude during the five-year review periods that site and downgradient groundwater quality has not improved due to continued site releases which cannot be attributed to upgradient sources. However, the selected remedy does not take into consideration the potential affect of the numerous, known off-site impacts which now appear to be impacting site groundwater quality. An SVE system was not included as an active part of the current remedy for a number of reasons, as discussed in the FS. First, the incremental improvement in reducing VOC migration to groundwater, and therefore in reducing risk to health and the environment, was deemed minimal following the construction of the surface barrier. Second, the treatment efficiency for an SVE system was not quantifiable given the relatively high VOC load currently on site and the on-going impacts from off-site sources. Finally, there were concerns that an SVE system would induce landfill gas migration from the Peoples Avenue Landfill that would adversely impact the operation of such a system. There were also concerns, discussed with the IEPA during the FS evaluation process, that such landfill gas migration would create a site health and safety issue related to possible explosive hazards. Nothing has changed at the site that would alter the first criterion, above. The engineered barrier was installed and is being maintained, effectively eliminating both surface water infiltration and potential exposure to any remaining site contaminants. However, with the predicted arrival of the uncontrolled upgradient plume(s), groundwater quality beneath the engineered barrier is likely to degrade for an unknown period of time. Groundwater quality degradation from the upgradient plume(s) can be expected to continue until the upgradient source(s) are either removed or are isolated, and there is presently no indication that there are either ongoing or planned efforts to address the uncontrolled sources. This has resulted in a situation in which the IPC Steering Committee's ability to incrementally evaluate IPC's contribution to groundwater degradation is now extremely difficult, if not impossible. Regarding the second criterion, if there was formerly an inability to quantify the efficacy of an SVE system given the then-current contaminant loads, then the arrival of the off-site plume(s), which could effectively increase on-site contaminant load, would further reduce the ability to quantify the efficacy of an SVE system. For example, if an SVE system were installed and operated
concurrent with the arrival of the upgradient plume, then it would be likely that the degrading effect of the plume would far outweigh the remedial effect of the SVE system. Regarding the third criterion, the potential for an SVE system to induce off-site landfill gas migration appears to be quite real given the documentation showing that groundwater in MW4, located adjacent to the People's Avenue Landfill, already contains dissolved methane which is likely the result of landfill gas migration on to the site. It is reasonable to expect that if landfill gas can migrate to the site under current, passive conditions (i.e., with no SVE system), then there is a greatly increased likelihood of additional landfill gas migration under active conditions (i.e., with an active SVE system) with a corresponding potential increase in groundwater quality degradation and health and safety related issues associated with landfill gas explosive hazards. Finally, it must be emphasized that the SVE system would be designed to reduce contaminant load in site soils and thus reduce the potential for contaminant migration from site soil to site groundwater, premised on the assumption that current groundwater impacts are generally a function of the current soil contaminant load. Given that the upgradient groundwater plume(s), which appears to have already reached the site, contain higher concentrations of some COCs than are currently in site groundwater, it is fair to expect that the upgradient source will be significantly larger and/or more heavily contaminated than what presently remains in site soil. Under these conditions the incremental improvement to site groundwater quality via the implementation of an SVE system will be immeasurable or nonexistent. On the basis of these arguments, the IPC Steering Committee recommended previously (*River Well Statistics Technical Memorandum, June 1, 2010*), and continues to recommend, that the SVE system be excluded from further consideration as a contingent remedy. The engineered barrier was completed in 2006. The groundwater monitoring natural attenuation program began in September 2007 and background data collection at the six site monitoring wells was completed in June 2008. The slight delay between the completion of the engineered barrier and the initiation of natural attenuation monitoring was based on the desire to complete the installation of the two river wells and to collect background data from them simultaneously with the six site monitoring wells. Unfortunately, the installation of the two river wells was delayed more than expected due to access issues beyond the control of the steering committee. Therefore, after a period of time the IEPA requested that background data collection begin at the six site wells even though the two river wells had not been installed. The two river wells were installed in March 2009 and background data collection was completed following the fourth quarter 2009 sampling event. The results of the river well background data collection and the calculated COC standards were provided to the IEPA on June 1, 2010. This report includes data collected through June 2014 (i.e., the twelfth semiannual event at the site wells and the ninth semiannual event at the river wells). ## 1.2 Statistical Analysis Plan The statistical evaluation plan (STEP) was included in the IEPA-approved First Year Annual Report/Technical Memorandum and was specifically designed to allow for subsequent modification to account for the anticipated influences from off-site contaminant sources and to reduce the possibility that those influences could result in statistical failures. Due the apparent arrival of the off-site plume and the continued landfill-gas influences in MW4, the STEP was modified in the Second Year Annual Report as follows: - Intrawell background standards were recalculated for 1,1-DCA in MW3 and for PCE and TCE in MW6 to account for the arrival of the off-site (upgradient) contaminant plume. - Interwell background standards were recalculated for 1,1-DCA, PCE, and TCE in the three upgradient wells to account for the arrival of the off-site (upgradient) contaminant plume. - A statistical failure at MW4 would hereafter be based on a combined failure of an interwell *and* an intrawell background standard to reduce the possibility of a statistical failure due to landfill gas influences from the Peoples Avenue Landfill. The evaluations included in this Seventh Year Annual Report are based on the modified STEP. ## 1.3 Seventh Year Annual Report Overview The purpose of this report is to provide the results of long-term natural attenuation monitoring to date at the site, a comparison of the data to previously calculated background groundwater quality standards, and an evaluation of whether the site is currently impacting groundwater. This report is organized as follows: - Section 2.0 provides on evaluation of groundwater quality based on a comparison of COC detections with calculated COC background standards. - Section 3.0 includes an alternative source demonstration (ASD) for various COCs detected currently or previously in monitoring wells MW1 and MW4 and, in general, any other statistically significant changes to groundwater quality, if any. - Section 4.0 includes a summary and conclusions. ## 2.0 EVALUATION OF SITE GROUNDWATER QUALITY Background groundwater quality data collection was performed at the six site monitoring wells in accordance with the ROD, SOW, and IEPA-approved GWMP. A site-specific list of seven COCs was selected and background standards were calculated based on the first four quarters of background data collection. The COC list and calculated background standards were approved by IEPA. As discussed in detail in the Second Year Annual Report and summarized herein, selected background standards were recalculated in the upgradient wells to incorporate upgradient plume-affected data, and minor modifications were made to the statistical evaluation protocol, to reduce the possibility of future statistical failures based on influences from the upgradient plume. Background data collection was completed in the two river wells following the fourth quarter 2009 sampling event. Specific COC background standards were calculated for both river wells and were submitted to IEPA on June 1, 2010 (*River Well Statistics Technical Memorandum*) and are the basis for the statistical comparisons included herein. ## 2.1 Site Groundwater Monitoring Network The site groundwater monitoring network consists of six monitoring wells, designated MW1, MW2, MW3, MW4, MW5, and MW6. The locations of these wells are shown on the figure included in Attachment 2. Each well is screened at a depth of approximately 60 feet within the shallow sand and gravel aquifer. Both regional and local groundwater flow in this aquifer is generally from northeast to southwest, towards the Rock River. Based on this groundwater flow direction, monitoring wells MW3, MW5, and MW6 are hydraulically upgradient of the site. The remaining three monitoring wells, MW1, MW2, and MW4 are hydraulically downgradient of the site. ## 2.2 River Wells Two river wells were installed in March 2009, as required, at the locations shown on the figure included in Attachment 2. The river wells are designated MW8 and MW9, and both were installed to a depth of approximately 19 feet. (Note: The designation MW7 is reserved for the "blind" duplicate sample submitted to the laboratory during each monitoring event). Based on current groundwater flow conditions, both river wells are hydraulically downgradient of the site. ## 2.3 Results of Ongoing Natural Attenuation Groundwater Monitoring Semiannual groundwater sampling for each of the seven COCs was performed in each of the site monitoring wells during this reporting period. Quarterly monitoring was performed at the two river wells through the background data collection period (ending in the fourth quarter 2009) and then continued on a semiannual basis. The laboratory data reports are included as Attachment 3. A summary of the analytical results for each COC in each monitoring well during this monitoring period is included in the table in Attachment 4. The table in Attachment 4 also includes the calculated background standards and the results of confirmation resampling conducted in January 2014. Concentration time trends for each COC in each well are included as Attachment 5. Each laboratory data report was reviewed for completeness and accuracy, in accordance with the IEPA-approved quality assurance project plan (QAPP). The reviews included laboratory QA/QC documentation and the results of field and quality control blanks. Data validation summaries for each laboratory sampling report are included in Attachment 6. A discussion of site groundwater quality is included below. ## 2.3.1 Upgradient Site Groundwater Quality Overall upgradient groundwater quality has improved with respect to total VOC load since natural attenuation monitoring began in 2007. However, total VOC load during the last two years has remained virtually unchanged. The concentrations of tetrachloroethene (PCE) and trichloroethene have generally increased in upgradient well MW6 since 2007. And during the most recent monitoring event, the concentration of PCE in MW6 exceeded both its interwell and intrawell background standard. This is consistent with the apparent arrival of the off-site, upgradient VOC plume, as reported previously. As stated in the ROD, "One of the most notable outcomes of the groundwater portion of the [RI] investigation was verification that a plume of chlorinated volatile organic compounds, at substantially higher concentrations than occur on site is approaching the site from the north east. The plume is expected to reach the IPC site in 15 to 45 years." Given that the RI data collection activities were completed by 1994, arrival of the plume by 2009 is entirely consistent with the predictions included in
the RI Report. This appears to be further supported by the total (i.e., cumulative) VOC load trends included as Attachment 7. As shown in the total VOC load time trends, the total (i.e., cumulative) VOC load has always been higher in the three upgradient wells compared to the three downgradient wells since natural attenuation monitoring began in 2007. Clearly, therefore, upgradient groundwater quality is worse than is downgradient groundwater quality based on total VOC load. The IEPA requested in their August 26, 2009 Second Year Annual Report comment letter that a graph showing the sum of trichloroethene (TCE) and 1,1,1-trichloroethane (1,1,1-TCA) in the upgradient site wells compared with the sum in the downgradient site wells be included in the annual reports. Such a time trend is included in Attachment 8. As shown on the graph, the total concentrations of these two compounds have been consistently higher in the upgradient wells. The sum of TCE and 1,1,1-TCA in the upgradient wells peaked in December 2009. Since that time, the concentrations of both compounds decreased fairly steadily for several years, and then increased modestly during the past two years. The most recent concentrations in the upgradient wells are nearly identical to when natural attenuation monitoring began in 2007, further suggesting that the upgradient plume persists. During the same time period the sum of TCE and 1,1,1-TCA in the downgradient wells have generally mirrored the pattern observed in the upgradient wells. However, it is relevant to note that the sum of TCE and 1,1,1-TCA in the downgradient wells is now presently about 30% less than it was at the start of natural attenuation monitoring, and this in spite of the arrival of the upgradient plume. And finally, the difference between the cumulative upgradient sums and the cumulative downgradient sums has increased from approximately 206 ug/L when natural attenuation monitoring began to 294 ug/L. Based on this comparison alone, there is evidence that groundwater quality has improved downgradient of the site compared to upgradient of the site. Strictly speaking and consistent with the IEPA-approved statistical analysis plan, an intrawell exceedance in an upgradient well (e.g., the most recent PCE exceedance in MW6) is evidence of groundwater degradation due to an off-site source and is, therefore, grounds for recalculating the intrawell background standard. However, given that there was only one such exceedance during this monitoring period and the relatively stable total VOC load, we do not think that any further upgradient intrawell background standard revisions are appropriate at this time. Also, the previously reported interwell exceedance of PCE in MW3 during the December 2011 monitoring event provides statistical evidence that the original background data set used to calculate the interwell standards may no longer be representative due to the arrival of the off-site plume. In other words, the current background data set, at least for PCE, may not properly account for temporal variability (i.e., as it is specifically affected by the arrival of the off-site plume). However, given that there was only a single interwell exceedance, and that exceedance has not been persistent, we do not currently propose the recalculation of any of the upgradient interwell background standards. This could change if there are additional interwell exceedances in any of the upgradient monitoring wells during future monitoring events. ## 2.3.2 Downgradient Site Groundwater Quality Downgradient groundwater quality in the three site wells continues to improve. Total VOC load in the downgradient wells, depicted in the time trends included as Attachment 7, has decreased fairly steadily and is presently about 587 ug/L compared to 990 ug/L when natural attenuation monitoring began, a decrease of about 41 percent. During this reporting period (and similar to the last reporting period) there was only one interwell exceedance, and that was for 1,1-DCA in well MW4. This compound has exceeded the interwell standard for several years. However, the concentration was below its intrawell background standard and, therefore, it does not represent a statistical failure. The presence of 1,1-DCA, along with vinyl chloride - both at relatively high concentrations compared to the other site monitoring wells - was reported previously in the First Year Annual Report/Technical Memorandum and was attributed to landfill gas from a known off-site/side gradient and uncontained source, the Peoples Avenue Landfill. This was the primary motivation behind our initial request to exclude these two compounds from long-term natural attenuation monitoring, which was denied by IEPA. This report includes an alternative source demonstration (ASD) in Section 3.0 for 1,1-DCA in well MW4. ## 2.3.3 Downgradient River Well Groundwater Quality Only one VOC, cis-1,2-DCE, was detected in river well MW9 during the December 2012 sampling event. However, neither compound was detected at a concentration exceeding its interwell background standard. No VOCs were detected in MW9 during the December 2013 sampling event. However, it was not confirmed by resampling. Similar to last year, six VOCs, 1,1,1-TCA, 1,1-DCA, 1,1-DCE, cis-1,2-DCE, PCE, and TCE were detected in MW8 during the December 2013 sampling event. Of these, the concentration of 1,1-DCA slightly exceeded its interwell background standard. However, the exceedance was not confirmed by the subsequent resample collected in January 2014. Four VOCs, 1,1-DCA, cis-1,2-DCE, PCE, and TCE, were detected in MW8 during the June 2014 sampling event, but all at concentrations that were below their respective interwell background standards. Based on the above results, there is no indication of site-related groundwater impacts in the river wells. ## 2.3.4 Quality Assurance/Quality Control Issues There were no quality assurance/quality control issues identified during this reporting period. ## 3.0 ALTERNATIVE SOURCE DEMONSTRATION FOR COCS DETECTED IN SITE MONITORING WELLS MW1 AND MW4 Groundwater samples collected during the quarterly background monitoring were also analyzed for dissolved methane, specifically during the third quarter 2008 monitoring event, as reported previously in the First Year Annual Report/Technical Memorandum. Dissolved methane, a major component of landfill gas, was detected in five of the six site monitoring wells as summarized in the table below. | Results | s of Disso | lved Me | ethane A | Analyses | |---------|------------|---------|----------|----------| | | | | | | | Sample | Concentration of Dissolved | Reporting Limit | |-------------|----------------------------|-----------------| | Location | Methane (ug/L) | (ug/L) | | MW1 | 2.1 | 0.19 | | MW2 | 2.1 | 0.19 | | MW3 | 4.1 | 0.19 | | MW4 | 42 | 0.19 | | MW5 | ND | 0.19 | | MW6 | 1.2 | 0.19 | | MW7* | 1.3 | 0.19 | | Field blank | ND | 0.19 | | Trip blank | ND | 0.19 | ND = not detected at the reporting limit ## 3.1 Sources of Naturally Occurring Dissolved Methane The relatively low dissolved methane concentrations in four of the wells may be indicative of methanogenesis, a naturally occurring form of anaerobic respiration associated with certain common microbes in the presence of organic material. Subsurface soil at the site was reported in the RI report to have contained relatively high concentrations of total organic carbon (TOC). Given that the recently constructed site cap has likely created subsurface anaerobic conditions, the presence of an abundant "food" source (i.e., the high TOC), it is not unreasonable to assume that methanogenesis is occurring. Therefore, the site-wide presence of relatively low concentrations of dissolved methane could indicate that natural attenuation is active. ## 3.2 Off-Site Sources of Dissolved Methane The Peoples Avenue Landfill is located adjacent to and south/southeast of the site, and reportedly received a combination of residential, commercial, and industrial wastes. The combustible gas methane was previously detected in the basement of the adjacent pet food plant, and it was attributed to the Peoples Avenue Landfill (USEPA, 1976; RI Report, 1994). Two isolated areas with elevated combustible gas readings (i.e., methane) were also identified between the site and the Peoples Avenue Landfill during RI activities conducted in the early ^{* &}quot;blind" duplicate sample collected from MW6 1990's. Soil gas collected from these areas also contained slightly elevated concentrations of VOCs. The conclusion contained in the RI was: "The USEPA and RI soil gas results indicate, therefore, that the Peoples Avenue Landfill may be an active source of combustible gases and, possibly, organic vapors in the Site area." Landfill gas migration is a commonly known transport mechanism for numerous VOCs including tetrachloroethene, trichloroethene, cis-1,2-dichloroethene, vinyl chloride, and others (Vogel et al., 1987). As such, landfill gas migration has been implicated to be a principal source of many VOCs, including those currently detected in site groundwater, in groundwater near landfills. While dissolved methane was discovered in most of the site monitoring wells, the concentrations were relatively low and, therefore, are likely at least partially the result of on-site methanogenesis. ## MW4 The concentration of 1,1-DCA continued to exceed its interwell background standard in MW4 during this reporting period, consistent with most of the historical sampling events. However, the concentration did not exceed its intrawell background standard. As such, the concentration does not constitute a statistical failure and, strictly speaking, is not subject to an Alternative Source Demonstration. However, the following information is provided for informational purposes. Given that MW4 is located adjacent to the Peoples Avenue Landfill and it contains, by far, the highest concentration of dissolved methane compared to
the other wells, it is highly likely that landfill gas from the Peoples Avenue Landfill is the source for much or all of the dissolved methane in MW4. This is consistent with the previous reports documented herein. And given that landfill gas is a common carrier of numerous VOCs, including 1,1-DCA and vinyl chloride, it is fair to conclude that elevated concentrations of compounds such as 1,1-DCA and vinyl chloride in MW4 are also the result of the presence of landfill gas. It is important to note that neither 1,1-DCA nor vinyl chloride are exhibiting increasing trends in MW4, and concentrations are well within the range of those detected since the beginning of natural attenuation monitoring. In fact, the concentration of vinyl chloride has been decreasing steadily. More importantly, the total VOC load in MW4 has continued to decrease from a high of 389 ug/L in December 2007 to its lowest point of approximately 90 ug/L during the most recent sampling event, a drop of approximately 77 percent. In summary, therefore, there is no indication that groundwater conditions on MW4 are deteriorating due to the site and, in fact, it appears that overall groundwater conditions in this well have improved based on total VOC load. ## MW1 There were no statistical failures at MW-1 during this reporting period. While there have been some historical interwell background standard exceedances for 1,1-DCA and vinyl chloride since natural attenuation monitoring began in December 2007, there have been no exceedances of the corresponding intrawell background standards. Total VOC load in MW1 has decreased from a high of approximately 336 ug/L in June 2008 to approximately 226 ug/L during the most recent sampling event, a decrease of approximately 33 percent. It is possible that landfill gas has also affected groundwater conditions in this well and have thus biased the concentration of 1,1-DCA and vinyl chloride, as indicated by the presence of dissolved methane in groundwater at this well. Other known (or unknown) upgradient sources may also be contributing sources. While MW1 is technically a downgradient well, it is located such that it could easily be considered sidegradient. Based on the location of MW1, it is easy to see that a plume migrating from the northeast or from the adjacent quarry could, potentially, impact MW1 while not affecting the upgradient wells. In any case, overall groundwater conditions have clearly improved in MW1 with respect to total VOC load and there is no indication of site-related degradation in groundwater quality at this well. ## 4.0 SUMMARY AND CONCLUSIONS The results of long-term natural attenuation monitoring to date indicate that total (i.e., cumulative) VOC load in the downgradient wells has decreased during this reporting period to near historic lows since natural attenuation monitoring began in 2007. Similarly, the cumulative concentrations of TCE and 1,1,1-TCA have also decreased considerably from their highest concentration levels. There does not appear to be any site-related groundwater degradation in either the site monitoring wells or in the river wells. The affects from the arrival of the upgradient plume appear to have generally stabilized for the moment, and the revised statistical standards and evaluation protocol appear to have satisfactorily addressed the impacts associated with the off-site plume and no further statistical evaluation revisions are currently recommended. However, it is reasonable to assume that the off-site plume will eventually migrate through the site and impact the downgradient monitoring wells, possibly resulting in new "false-positive" statistical failures that will need to be addressed either by revising calculated background standards or by changing the statistical evaluation protocol (or both). While on-site methanogenesis is likely occurring, indicating that natural attenuation is active, the relatively high (i.e., anomalous) concentrations of dissolved methane in downgradient well MW4 appear to be the result of landfill gas migration from the Peoples Avenue Landfill. It is likely that the associated relatively high concentrations of 1,1-DCA and vinyl chloride in MW4 are the result of the presence of landfill gas and are not site-related. It is also likely that the presence of these compounds in other site wells are biased high due to the presence of landfill gas. We look forward to the IEPA's approval of this report. If you have any questions, please do not hesitate to call me at 630 834-8847. Sincerely, ENVIRONMENTAL INFORMATION LOGISTICS, LLC Michael (A. Michael Hirt, P.G. Senior Geologist #### References Golder Associates, Inc., 1994, Final Remedial Investigation Report, Interstate Pollution Control Inc. Site, Rockford, Illinois. USEPA, 1976, Leachate Damage Assessment: Case Study of the Peoples Avenue Landfill Solid Waste Disposal Site in Rockford, Illinois, EPA/530/SW-517. Vogel et al., 1987, *Transformation of Halogenated Aliphatic Compounds*, Environmental Science Technology, vol. 21, pp. 722-736. ## **Attachment 1** **Site Location and Detail Maps** ## **Attachment 2** Figure Showing the Locations of the Long-Term Natural Attenuation Monitoring Wells ## **LEGEND** PROXIMATE SITE BOUNDARY LONG-TERM NATURAL ATTENUATION MONITORING WELL LOCATIONS ## **NOTES** 1. AERIAL PHOTO PROVIDED BY WINNEBAGO COUNTY GEOGRAPHIC INFORMATION SYSTEM (WINGIS). EIL ENVIRONMENTAL INFORMATION LOGISTICS, LLC PREPARED FOR INTERSTATE POLLUTION CONTROL ## FIGURE 1 LONG-TERM NATURAL ATTENUATION MONITORING WELL LOCATIONS INTERSTATE POLLUTION CONTROL ROCKFORD, ILLINOIS ROCKFORD, ILLINOIS 070309 JULY 2009 # Attachment 3 Laboratory Data Reports THE LEADER IN ENVIRONMENTAL TESTING ## ANALYTICAL REPORT TestAmerica Laboratories, Inc. TestAmerica Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200 TestAmerica Job ID: 500-68720-1 Client Project/Site: Interstate Pollution Control Site #### For: Environmental Information Logistics (EIL 405 Ritsher Street Beloit, Wisconsin 53511 Attn: Ms. Mary Pearson L'Il hhym Authorized for release by: 12/20/2013 12:44:40 PM Richard Wright, Senior Project Manager (708)534-5200 richard.wright@testamericainc.comLINKS Review your project results through Total Access **Have a Question?** Visit us at: www.testamericainc.com The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page. This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature. Results relate only to the items tested and the sample(s) as received by the laboratory. ## **Table of Contents** | Cover Page | 1 | |-----------------------|----| | Table of Contents | 2 | | Case Narrative | 3 | | Detection Summary | 4 | | Method Summary | 6 | | Sample Summary | 7 | | Client Sample Results | 8 | | Definitions | 19 | | QC Association | 20 | | Surrogate Summary | 21 | | QC Sample Results | 22 | | Chronicle | 28 | | Certification Summary | 30 | | Chain of Custody | 31 | | Receipt Checklists | 32 | | Field Data Sheets | 33 | ## **Case Narrative** Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-68720-1 Job ID: 500-68720-1 **Laboratory: TestAmerica Chicago** Narrative Job Narrative 500-68720-1 #### Comments No additional comments. #### Receipt The samples were received on 12/17/2013 10:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.8° C. Received 1 vial broken for sample 5. Received Trip Blank not on COC, added to COC and logged in. #### GC/MS VOA No analytical or quality issues were noted. 3 4 5 6 Ω 9 10 12 15 16 Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-68720-1 Lab Sample ID: 500-68720-1 Lab Sample ID: 500-68720-2 Lab Sample ID: 500-68720-3 Lab Sample ID: 500-68720-4 Lab Sample ID: 500-68720-5 Lab Sample ID: 500-68720-6 | Analyte | Result | Qualifier | RL | MDL | Unit | Dil Fac | D | Method | Prep Type | |------------------------|--------|-----------|-----|------|------|---------|---|--------|-----------| | 1,1-Dichloroethene | 7.2 | | 5.0 | 0.31 | ug/L | | _ | 8260B | Total/NA | | 1,1-Dichloroethane | 18 | | 5.0 | 0.19 | ug/L | 1 | | 8260B | Total/NA | | cis-1,2-Dichloroethene | 36 | | 5.0 | 0.12 | ug/L | 1 | | 8260B | Total/NA | | 1,1,1-Trichloroethane | 8.4 | | 5.0 | 0.20 | ug/L | 1 | | 8260B | Total/NA | | Trichloroethene | 77 | | 5.0 | 0.19 | ug/L | 1 | | 8260B | Total/NA | | Tetrachloroethene | 11 | | 5.0 | 0.17 | ug/L | 1 | | 8260B | Total/NA | **Client Sample ID: IPC GW MW9** **Client Sample ID: IPC GW MW8** | _ | | | | | | |------------------------|------------------|-----|-----------|------------------|-----------| | Analyte | Result Qualifier | RL | MDL Unit | Dil Fac D Method | Prep Type | | cis-1 2-Dichloroethene | 7.3 | 5.0 | 0.12 ug/l | 1 8260B | Total/NA | **Client Sample ID: IPC GW MW7** | Analyte | Result Qu | ualifier RL | MDL | Unit | Dil Fac | D | Method | Prep Type | |------------------------|-----------|-------------|------|------|---------|---|--------|-----------| | Vinyl chloride | 13 | 2.0 | 0.10 | ug/L | 1 | _ | 8260B | Total/NA | | 1,1-Dichloroethene | 13 | 5.0 | 0.31 | ug/L | 1 | | 8260B | Total/NA | | 1,1-Dichloroethane | 13 | 5.0 | 0.19 | ug/L | 1 | | 8260B | Total/NA | | cis-1,2-Dichloroethene | 170 | 5.0 | 0.12 | ug/L | 1 | | 8260B | Total/NA | | Trichloroethene | 11 | 5.0 | 0.19 | ug/L | 1 | | 8260B | Total/NA | Client Sample ID: IPC GW MW6 |
Analyte | Result Qualifier | RL | MDL | Unit |
Dil Fac | D | Method | Prep Type | |------------------------|------------------|-----|------|------|---------|---|--------|-----------| | Vinyl chloride | | 2.0 | 0.10 | ug/L | 1 | _ | 8260B | Total/NA | | 1,1-Dichloroethene | 10 | 5.0 | 0.31 | ug/L | 1 | | 8260B | Total/NA | | 1,1-Dichloroethane | 7.2 | 5.0 | 0.19 | ug/L | 1 | | 8260B | Total/NA | | cis-1,2-Dichloroethene | 64 | 5.0 | 0.12 | ug/L | 1 | | 8260B | Total/NA | | 1,1,1-Trichloroethane | 12 | 5.0 | 0.20 | ug/L | 1 | | 8260B | Total/NA | | Trichloroethene | 81 | 5.0 | 0.19 | ug/L | 1 | | 8260B | Total/NA | | Tetrachloroethene | 28 | 5.0 | 0.17 | ug/L | 1 | | 8260B | Total/NA | **Client Sample ID: IPC GW MW5** | Analyte | Result Qualifier | RL | MDL | Unit | Dil Fac | D | Method | Prep Type | |------------------------|------------------|-----|------|------|---------|---|--------|-----------| | 1,1-Dichloroethene | 10 | 5.0 | 0.31 | ug/L | 1 | _ | 8260B | Total/NA | | 1,1-Dichloroethane | 5.9 | 5.0 | 0.19 | ug/L | 1 | | 8260B | Total/NA | | cis-1,2-Dichloroethene | 32 | 5.0 | 0.12 | ug/L | 1 | | 8260B | Total/NA | | 1,1,1-Trichloroethane | 11 | 5.0 | 0.20 | ug/L | 1 | | 8260B | Total/NA | | Trichloroethene | 130 | 5.0 | 0.19 | ug/L | 1 | | 8260B | Total/NA | | Tetrachloroethene | 35 | 5.0 | 0.17 | ug/L | 1 | | 8260B | Total/NA | Client Sample ID: IPC GW MW4 | Analyte | Result Qualifier | RL | MDL Unit | Dil Fac D | Method | Prep Type | |------------------------|------------------|-----|-----------|-----------|--------|-----------| | Vinyl chloride | 31 | 2.0 | 0.10 ug/L | | 8260B | Total/NA | | 1,1-Dichloroethane | 6.9 | 5.0 | 0.19 ug/L | 1 | 8260B | Total/NA | | cis-1,2-Dichloroethene | 58 | 5.0 | 0.12 ug/L | 1 | 8260B | Total/NA | | 1,1,1-Trichloroethane | 8.2 | 5.0 | 0.20 ug/L | 1 | 8260B | Total/NA | This Detection Summary does not include radiochemical test results. Page 4 of 33 Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-68720-1 Lab Sample ID: 500-68720-7 | Analyte | Result Qualifier | RL | MDL Unit | Dil Fac D | Method | Prep Type | |------------------------|------------------|-----|-----------|-----------|--------|-----------| | 1,1-Dichloroethene | 11 | 5.0 | 0.31 ug/L | | 8260B | Total/NA | | cis-1,2-Dichloroethene | 27 | 5.0 | 0.12 ug/L | 1 | 8260B | Total/NA | | 1,1,1-Trichloroethane | 11 | 5.0 | 0.20 ug/L | 1 | 8260B | Total/NA | | Trichloroethene | 180 | 5.0 | 0.19 ug/L | 1 | 8260B | Total/NA | | Tetrachloroethene | 35 | 5.0 | 0.17 ug/L | 1 | 8260B | Total/NA | Client Sample ID: IPC GW MW2 **Client Sample ID: IPC GW MW3** | Lab Sample ID: 500-68720-8 | |----------------------------| |----------------------------| | Analyte | Result | Qualifier | RL | MDL | Unit | Dil Fac | D | Method | Prep Type | |------------------------|--------|-----------|-----|------|------|---------|---|--------|-----------| | Vinyl chloride | 4.2 | | 2.0 | 0.10 | ug/L | 1 | _ | 8260B | Total/NA | | 1,1-Dichloroethene | 12 | | 5.0 | 0.31 | ug/L | 1 | | 8260B | Total/NA | | cis-1,2-Dichloroethene | 50 | | 5.0 | 0.12 | ug/L | 1 | | 8260B | Total/NA | | 1,1,1-Trichloroethane | 11 | | 5.0 | 0.20 | ug/L | 1 | | 8260B | Total/NA | | Trichloroethene | 170 | | 5.0 | 0.19 | ug/L | 1 | | 8260B | Total/NA | | Tetrachloroethene | 31 | | 5.0 | 0.17 | ug/L | 1 | | 8260B | Total/NA | Client Sample ID: IPC GW MW1 ## Lab Sample ID: 500-68720-9 | Analyte | Result Qualifier | RL | MDL Unit | Dil Fac D | Method | Prep Type | |------------------------|------------------|-----|-----------|-----------|--------|-----------| | Vinyl chloride | 14 | 2.0 | 0.10 ug/L | | 8260B | Total/NA | | 1,1-Dichloroethene | 13 | 5.0 | 0.31 ug/L | 1 | 8260B | Total/NA | | 1,1-Dichloroethane | 14 | 5.0 | 0.19 ug/L | 1 | 8260B | Total/NA | | cis-1,2-Dichloroethene | 170 | 5.0 | 0.12 ug/L | 1 | 8260B | Total/NA | | 1,1,1-Trichloroethane | 5.2 | 5.0 | 0.20 ug/L | 1 | 8260B | Total/NA | | Trichloroethene | 11 | 5.0 | 0.19 ug/L | 1 | 8260B | Total/NA | Client Sample ID: F.B. Lab Sample ID: 500-68720-10 No Detections. **Client Sample ID: Trip Blank** Lab Sample ID: 500-68720-11 No Detections. This Detection Summary does not include radiochemical test results. TestAmerica Chicago Page 5 of 33 ## **Method Summary** Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-68720-1 | Method | Method Description | Protocol | Laboratory | |--------|------------------------------------|----------|------------| | 8260B | Volatile Organic Compounds (GC/MS) | SW846 | TAL CHI | #### **Protocol References:** SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. #### Laboratory References: TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200 5 7 ŏ 10 11 13 14 16 ## **Sample Summary** Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-68720-1 | Lab Sample ID | Client Sample ID | Matrix | Collected | Received | |---------------|------------------|--------|----------------|----------------| | 500-68720-1 | IPC GW MW8 | Water | 12/16/13 10:10 | 12/17/13 10:30 | | 500-68720-2 | IPC GW MW9 | Water | 12/16/13 10:28 | 12/17/13 10:30 | | 500-68720-3 | IPC GW MW7 | Water | 12/16/13 11:00 | 12/17/13 10:30 | | 500-68720-4 | IPC GW MW6 | Water | 12/16/13 12:37 | 12/17/13 10:30 | | 500-68720-5 | IPC GW MW5 | Water | 12/16/13 13:23 | 12/17/13 10:30 | | 500-68720-6 | IPC GW MW4 | Water | 12/16/13 13:57 | 12/17/13 10:30 | | 500-68720-7 | IPC GW MW3 | Water | 12/16/13 14:30 | 12/17/13 10:30 | | 500-68720-8 | IPC GW MW2 | Water | 12/16/13 15:00 | 12/17/13 10:30 | | 500-68720-9 | IPC GW MW1 | Water | 12/16/13 15:26 | 12/17/13 10:30 | | 500-68720-10 | F.B. | Water | 12/16/13 15:45 | 12/17/13 10:30 | | 500-68720-11 | Trip Blank | Water | 12/16/13 00:00 | 12/17/13 10:30 | 3 4 6 7 8 9 44 12 1 1 15 46 Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-68720-1 Lab Sample ID: 500-68720-1 Matrix: Water Client Sample ID: IPC GW MW8 Date Collected: 12/16/13 10:10 Date Received: 12/17/13 10:30 | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |------------------------------|-----------|-----------|----------|-------|------|---|----------|----------------|---------| | Benzene | <5.0 | | 5.0 | 0.074 | ug/L | | | 12/19/13 16:37 | 1 | | Chloromethane | <5.0 | | 5.0 | 0.18 | ug/L | | | 12/19/13 16:37 | 1 | | Vinyl chloride | <2.0 | | 2.0 | 0.10 | ug/L | | | 12/19/13 16:37 | • | | Bromomethane | <5.0 | | 5.0 | 0.31 | ug/L | | | 12/19/13 16:37 | 1 | | Chloroethane | <5.0 | | 5.0 | 0.34 | ug/L | | | 12/19/13 16:37 | 1 | | 1,1-Dichloroethene | 7.2 | | 5.0 | 0.31 | ug/L | | | 12/19/13 16:37 | 1 | | Carbon disulfide | <5.0 | | 5.0 | 0.43 | ug/L | | | 12/19/13 16:37 | 1 | | Acetone | <20 | | 20 | 1.3 | ug/L | | | 12/19/13 16:37 | • | | Methylene Chloride | <10 | | 10 | 0.68 | ug/L | | | 12/19/13 16:37 | 1 | | trans-1,2-Dichloroethene | <5.0 | | 5.0 | 0.25 | ug/L | | | 12/19/13 16:37 | 1 | | 1,1-Dichloroethane | 18 | | 5.0 | 0.19 | ug/L | | | 12/19/13 16:37 | 1 | | cis-1,2-Dichloroethene | 36 | | 5.0 | 0.12 | ug/L | | | 12/19/13 16:37 | 1 | | Methyl Ethyl Ketone | <20 | | 20 | 1.5 | ug/L | | | 12/19/13 16:37 | 1 | | Chloroform | <5.0 | | 5.0 | 0.20 | ug/L | | | 12/19/13 16:37 | 1 | | 1,1,1-Trichloroethane | 8.4 | | 5.0 | 0.20 | ug/L | | | 12/19/13 16:37 | 1 | | Carbon tetrachloride | <5.0 | | 5.0 | 0.26 | ug/L | | | 12/19/13 16:37 | 1 | | 1,2-Dichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/19/13 16:37 | | | Trichloroethene | 77 | | 5.0 | 0.19 | ug/L | | | 12/19/13 16:37 | • | | 1,2-Dichloropropane | <5.0 | | 5.0 | 0.20 | ug/L | | | 12/19/13 16:37 | | | Bromodichloromethane | <5.0 | | 5.0 | 0.17 | ug/L | | | 12/19/13 16:37 | | | cis-1,3-Dichloropropene | <5.0 | | 5.0 | 0.18 | ug/L | | | 12/19/13 16:37 | | | methyl isobutyl ketone | <20 | | 20 | 0.33 | ug/L | | | 12/19/13 16:37 | , | | Toluene | <5.0 | | 5.0 | 0.11 | ug/L | | | 12/19/13 16:37 | | | trans-1,3-Dichloropropene | <5.0 | | 5.0 | 0.21 | ug/L | | | 12/19/13 16:37 | | | 1,1,2-Trichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/19/13 16:37 | | | Tetrachloroethene | 11 | | 5.0 | 0.17 | ug/L | | | 12/19/13 16:37 | | | 2-Hexanone | <20 | | 20 | 0.56 | ug/L | | | 12/19/13 16:37 | | | Dibromochloromethane | <5.0 | | 5.0 | 0.32 | ug/L | | | 12/19/13 16:37 | , | | Chlorobenzene | <5.0 | | 5.0 | 0.14 | ug/L | | | 12/19/13 16:37 | 1 | | Ethylbenzene | <5.0 | | 5.0 | 0.13 | ug/L | | | 12/19/13 16:37 | • | | Styrene | <5.0 | | 5.0 | 0.10 | ug/L | | | 12/19/13 16:37 | 1 | | Bromoform | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/19/13 16:37 | 1 | | 1,1,2,2-Tetrachloroethane | <5.0 | | 5.0 | 0.23 | ug/L | | | 12/19/13 16:37 | 1 | | Xylenes, Total | <5.0 | | 5.0 | 0.068 | ug/L | | | 12/19/13 16:37 | 1 | | Surrogate | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | 1,2-Dichloroethane-d4 (Surr) | 105 | | 75 - 125 | | | - | | 12/19/13 16:37 | | | Toluene-d8 (Surr) | 106 | | 75 - 120 | | | | | 12/19/13 16:37 | | | 4-Bromofluorobenzene (Surr) | 96 | | 75 - 120 | | | | | 12/19/13 16:37 | - | | Dibromofluoromethane | 101 | | 75 - 120 | | | | | 12/19/13 16:37 | | 3 R 9 11 12 14 15 П Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-68720-1 Lab Sample ID: 500-68720-2 Matrix: Water Client Sample ID: IPC GW MW9 Date Collected: 12/16/13 10:28 Date Received: 12/17/13 10:30 | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |------------------------------|-----------|-----------|----------|-------|------|---|----------|----------------|---------| | Benzene | <5.0 | | 5.0 | 0.074 | ug/L | | | 12/19/13 17:01 | 1 | | Chloromethane | <5.0 | | 5.0 | 0.18 | ug/L | | | 12/19/13 17:01 | 1 | |
Vinyl chloride | <2.0 | | 2.0 | 0.10 | ug/L | | | 12/19/13 17:01 | 1 | | Bromomethane | <5.0 | | 5.0 | 0.31 | ug/L | | | 12/19/13 17:01 | 1 | | Chloroethane | <5.0 | | 5.0 | 0.34 | ug/L | | | 12/19/13 17:01 | 1 | | 1,1-Dichloroethene | <5.0 | | 5.0 | 0.31 | ug/L | | | 12/19/13 17:01 | 1 | | Carbon disulfide | <5.0 | | 5.0 | 0.43 | ug/L | | | 12/19/13 17:01 | 1 | | Acetone | <20 | | 20 | 1.3 | ug/L | | | 12/19/13 17:01 | 1 | | Methylene Chloride | <10 | | 10 | 0.68 | ug/L | | | 12/19/13 17:01 | 1 | | trans-1,2-Dichloroethene | <5.0 | | 5.0 | 0.25 | ug/L | | | 12/19/13 17:01 | 1 | | 1,1-Dichloroethane | <5.0 | | 5.0 | 0.19 | ug/L | | | 12/19/13 17:01 | 1 | | cis-1,2-Dichloroethene | 7.3 | | 5.0 | 0.12 | ug/L | | | 12/19/13 17:01 | 1 | | Methyl Ethyl Ketone | <20 | | 20 | 1.5 | ug/L | | | 12/19/13 17:01 | 1 | | Chloroform | <5.0 | | 5.0 | 0.20 | ug/L | | | 12/19/13 17:01 | 1 | | 1,1,1-Trichloroethane | <5.0 | | 5.0 | 0.20 | ug/L | | | 12/19/13 17:01 | 1 | | Carbon tetrachloride | <5.0 | | 5.0 | 0.26 | ug/L | | | 12/19/13 17:01 | 1 | | 1,2-Dichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/19/13 17:01 | 1 | | Trichloroethene | <5.0 | | 5.0 | 0.19 | ug/L | | | 12/19/13 17:01 | 1 | | 1,2-Dichloropropane | <5.0 | | 5.0 | 0.20 | ug/L | | | 12/19/13 17:01 | 1 | | Bromodichloromethane | <5.0 | | 5.0 | 0.17 | ug/L | | | 12/19/13 17:01 | 1 | | cis-1,3-Dichloropropene | <5.0 | | 5.0 | 0.18 | ug/L | | | 12/19/13 17:01 | 1 | | methyl isobutyl ketone | <20 | | 20 | 0.33 | ug/L | | | 12/19/13 17:01 | 1 | | Toluene | <5.0 | | 5.0 | 0.11 | ug/L | | | 12/19/13 17:01 | 1 | | trans-1,3-Dichloropropene | <5.0 | | 5.0 | 0.21 | ug/L | | | 12/19/13 17:01 | 1 | | 1,1,2-Trichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/19/13 17:01 | 1 | | Tetrachloroethene | <5.0 | | 5.0 | 0.17 | ug/L | | | 12/19/13 17:01 | 1 | | 2-Hexanone | <20 | | 20 | 0.56 | ug/L | | | 12/19/13 17:01 | 1 | | Dibromochloromethane | <5.0 | | 5.0 | 0.32 | ug/L | | | 12/19/13 17:01 | 1 | | Chlorobenzene | <5.0 | | 5.0 | 0.14 | ug/L | | | 12/19/13 17:01 | 1 | | Ethylbenzene | <5.0 | | 5.0 | 0.13 | ug/L | | | 12/19/13 17:01 | 1 | | Styrene | <5.0 | | 5.0 | 0.10 | ug/L | | | 12/19/13 17:01 | 1 | | Bromoform | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/19/13 17:01 | 1 | | 1,1,2,2-Tetrachloroethane | <5.0 | | 5.0 | 0.23 | ug/L | | | 12/19/13 17:01 | 1 | | Xylenes, Total | <5.0 | | 5.0 | 0.068 | ug/L | | | 12/19/13 17:01 | 1 | | Surrogate | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | 1,2-Dichloroethane-d4 (Surr) | 106 | | 75 - 125 | | | - | | 12/19/13 17:01 | 1 | | Toluene-d8 (Surr) | 107 | | 75 - 120 | | | | | 12/19/13 17:01 | 1 | | 4-Bromofluorobenzene (Surr) | 96 | | 75 - 120 | | | | | 12/19/13 17:01 | 1 | | Dibromofluoromethane | 106 | | 75 - 120 | | | | | 12/19/13 17:01 | 1 | Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-68720-1 Lab Sample ID: 500-68720-3 Matrix: Water Client Sample ID: IPC GW MW7 Date Collected: 12/16/13 11:00 Date Received: 12/17/13 10:30 | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |------------------------------|-----------|-----------|----------|-------|------|---|----------|----------------|---------| | Benzene | <5.0 | | 5.0 | 0.074 | ug/L | | | 12/19/13 17:26 | 1 | | Chloromethane | <5.0 | | 5.0 | 0.18 | ug/L | | | 12/19/13 17:26 | 1 | | Vinyl chloride | 13 | | 2.0 | 0.10 | ug/L | | | 12/19/13 17:26 | 1 | | Bromomethane | <5.0 | | 5.0 | 0.31 | ug/L | | | 12/19/13 17:26 | 1 | | Chloroethane | <5.0 | | 5.0 | 0.34 | ug/L | | | 12/19/13 17:26 | 1 | | 1,1-Dichloroethene | 13 | | 5.0 | 0.31 | ug/L | | | 12/19/13 17:26 | 1 | | Carbon disulfide | <5.0 | | 5.0 | 0.43 | ug/L | | | 12/19/13 17:26 | 1 | | Acetone | <20 | | 20 | 1.3 | ug/L | | | 12/19/13 17:26 | 1 | | Methylene Chloride | <10 | | 10 | 0.68 | ug/L | | | 12/19/13 17:26 | 1 | | trans-1,2-Dichloroethene | <5.0 | | 5.0 | 0.25 | ug/L | | | 12/19/13 17:26 | 1 | | 1,1-Dichloroethane | 13 | | 5.0 | 0.19 | ug/L | | | 12/19/13 17:26 | 1 | | cis-1,2-Dichloroethene | 170 | | 5.0 | 0.12 | ug/L | | | 12/19/13 17:26 | 1 | | Methyl Ethyl Ketone | <20 | | 20 | 1.5 | ug/L | | | 12/19/13 17:26 | 1 | | Chloroform | <5.0 | | 5.0 | 0.20 | ug/L | | | 12/19/13 17:26 | 1 | | 1,1,1-Trichloroethane | <5.0 | | 5.0 | 0.20 | ug/L | | | 12/19/13 17:26 | 1 | | Carbon tetrachloride | <5.0 | | 5.0 | 0.26 | ug/L | | | 12/19/13 17:26 | 1 | | 1,2-Dichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/19/13 17:26 | 1 | | Trichloroethene | 11 | | 5.0 | 0.19 | ug/L | | | 12/19/13 17:26 | 1 | | 1,2-Dichloropropane | <5.0 | | 5.0 | 0.20 | ug/L | | | 12/19/13 17:26 | 1 | | Bromodichloromethane | <5.0 | | 5.0 | 0.17 | ug/L | | | 12/19/13 17:26 | 1 | | cis-1,3-Dichloropropene | <5.0 | | 5.0 | 0.18 | ug/L | | | 12/19/13 17:26 | 1 | | methyl isobutyl ketone | <20 | | 20 | 0.33 | ug/L | | | 12/19/13 17:26 | 1 | | Toluene | <5.0 | | 5.0 | 0.11 | ug/L | | | 12/19/13 17:26 | 1 | | trans-1,3-Dichloropropene | <5.0 | | 5.0 | 0.21 | ug/L | | | 12/19/13 17:26 | 1 | | 1,1,2-Trichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/19/13 17:26 | 1 | | Tetrachloroethene | <5.0 | | 5.0 | 0.17 | ug/L | | | 12/19/13 17:26 | 1 | | 2-Hexanone | <20 | | 20 | 0.56 | ug/L | | | 12/19/13 17:26 | 1 | | Dibromochloromethane | <5.0 | | 5.0 | 0.32 | ug/L | | | 12/19/13 17:26 | 1 | | Chlorobenzene | <5.0 | | 5.0 | 0.14 | ug/L | | | 12/19/13 17:26 | 1 | | Ethylbenzene | <5.0 | | 5.0 | 0.13 | ug/L | | | 12/19/13 17:26 | 1 | | Styrene | <5.0 | | 5.0 | 0.10 | ug/L | | | 12/19/13 17:26 | 1 | | Bromoform | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/19/13 17:26 | 1 | | 1,1,2,2-Tetrachloroethane | <5.0 | | 5.0 | 0.23 | ug/L | | | 12/19/13 17:26 | 1 | | Xylenes, Total | <5.0 | | 5.0 | 0.068 | ug/L | | | 12/19/13 17:26 | 1 | | Surrogate | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | 1,2-Dichloroethane-d4 (Surr) | 104 | | 75 - 125 | | | - | | 12/19/13 17:26 | 1 | | Toluene-d8 (Surr) | 105 | | 75 - 120 | | | | | 12/19/13 17:26 | 1 | | 4-Bromofluorobenzene (Surr) | 99 | | 75 - 120 | | | | | 12/19/13 17:26 | 1 | | Dibromofluoromethane | 104 | | 75 - 120 | | | | | 12/19/13 17:26 | | Page 10 of 33 Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-68720-1 Lab Sample ID: 500-68720-4 Matrix: Water Client Sample ID: IPC GW MW6 Date Collected: 12/16/13 12:37 Date Received: 12/17/13 10:30 | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |------------------------------|-----------|-----------|----------|-------|------|---|----------|----------------|---------| | Benzene | <5.0 | | 5.0 | 0.074 | ug/L | | | 12/19/13 17:51 | 1 | | Chloromethane | <5.0 | | 5.0 | 0.18 | ug/L | | | 12/19/13 17:51 | 1 | | Vinyl chloride | 11 | | 2.0 | 0.10 | ug/L | | | 12/19/13 17:51 | 1 | | Bromomethane | <5.0 | | 5.0 | 0.31 | ug/L | | | 12/19/13 17:51 | 1 | | Chloroethane | <5.0 | | 5.0 | 0.34 | ug/L | | | 12/19/13 17:51 | 1 | | 1,1-Dichloroethene | 10 | | 5.0 | 0.31 | ug/L | | | 12/19/13 17:51 | 1 | | Carbon disulfide | <5.0 | | 5.0 | 0.43 | ug/L | | | 12/19/13 17:51 | 1 | | Acetone | <20 | | 20 | 1.3 | ug/L | | | 12/19/13 17:51 | 1 | | Methylene Chloride | <10 | | 10 | 0.68 | ug/L | | | 12/19/13 17:51 | 1 | | trans-1,2-Dichloroethene | <5.0 | | 5.0 | 0.25 | ug/L | | | 12/19/13 17:51 | 1 | | 1,1-Dichloroethane | 7.2 | | 5.0 | 0.19 | ug/L | | | 12/19/13 17:51 | 1 | | cis-1,2-Dichloroethene | 64 | | 5.0 | 0.12 | ug/L | | | 12/19/13 17:51 | 1 | | Methyl Ethyl Ketone | <20 | | 20 | 1.5 | ug/L | | | 12/19/13 17:51 | 1 | | Chloroform | <5.0 | | 5.0 | 0.20 | ug/L | | | 12/19/13 17:51 | 1 | | 1,1,1-Trichloroethane | 12 | | 5.0 | 0.20 | ug/L | | | 12/19/13 17:51 | 1 | | Carbon tetrachloride | <5.0 | | 5.0 | 0.26 | ug/L | | | 12/19/13 17:51 | 1 | | 1,2-Dichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/19/13 17:51 | 1 | | Trichloroethene | 81 | | 5.0 | 0.19 | ug/L | | | 12/19/13 17:51 | 1 | | 1,2-Dichloropropane | <5.0 | | 5.0 | 0.20 | ug/L | | | 12/19/13 17:51 | 1 | | Bromodichloromethane | <5.0 | | 5.0 | 0.17 | ug/L | | | 12/19/13 17:51 | 1 | | cis-1,3-Dichloropropene | <5.0 | | 5.0 | 0.18 | ug/L | | | 12/19/13 17:51 | 1 | | methyl isobutyl ketone | <20 | | 20 | 0.33 | ug/L | | | 12/19/13 17:51 | 1 | | Toluene | <5.0 | | 5.0 | 0.11 | ug/L | | | 12/19/13 17:51 | 1 | | trans-1,3-Dichloropropene | <5.0 | | 5.0 | 0.21 | ug/L | | | 12/19/13 17:51 | 1 | | 1,1,2-Trichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/19/13 17:51 | 1 | | Tetrachloroethene | 28 | | 5.0 | 0.17 | ug/L | | | 12/19/13 17:51 | 1 | | 2-Hexanone | <20 | | 20 | 0.56 | ug/L | | | 12/19/13 17:51 | 1 | | Dibromochloromethane | <5.0 | | 5.0 | 0.32 | ug/L | | | 12/19/13 17:51 | 1 | | Chlorobenzene | <5.0 | | 5.0 | 0.14 | ug/L | | | 12/19/13 17:51 | 1 | | Ethylbenzene | <5.0 | | 5.0 | 0.13 | ug/L | | | 12/19/13 17:51 | 1 | | Styrene | <5.0 | | 5.0 | 0.10 | ug/L | | | 12/19/13 17:51 | 1 | | Bromoform | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/19/13 17:51 | 1 | | 1,1,2,2-Tetrachloroethane | <5.0 | | 5.0 | 0.23 | ug/L | | | 12/19/13 17:51 | 1 | | Xylenes, Total | <5.0 | | 5.0 | 0.068 | ug/L | | | 12/19/13 17:51 | 1 | | Surrogate | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | 1,2-Dichloroethane-d4 (Surr) | 103 | | 75 - 125 | | | - | | 12/19/13 17:51 | 1 | | Toluene-d8 (Surr) | 106 | | 75 - 120 | | | | | 12/19/13 17:51 | 1 | | 4-Bromofluorobenzene (Surr) | 96 | | 75 - 120 | | | | | 12/19/13 17:51 | 1 | | Dibromofluoromethane | 104 | | 75 - 120 | | | | | 12/19/13 17:51 | | 3 5 7 9 11 11 15 1 6 Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-68720-1 Lab Sample ID: 500-68720-5 Matrix: Water Client Sample ID: IPC GW MW5 Date Collected: 12/16/13 13:23 Date Received: 12/17/13 10:30 | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |------------------------------
-----------|-----------|----------|-------|------|---|----------|----------------|---------| | Benzene | <5.0 | | 5.0 | 0.074 | ug/L | | | 12/19/13 18:16 | 1 | | Chloromethane | <5.0 | | 5.0 | 0.18 | ug/L | | | 12/19/13 18:16 | 1 | | Vinyl chloride | <2.0 | | 2.0 | 0.10 | ug/L | | | 12/19/13 18:16 | 1 | | Bromomethane | <5.0 | | 5.0 | 0.31 | ug/L | | | 12/19/13 18:16 | 1 | | Chloroethane | <5.0 | | 5.0 | 0.34 | ug/L | | | 12/19/13 18:16 | 1 | | 1,1-Dichloroethene | 10 | | 5.0 | 0.31 | ug/L | | | 12/19/13 18:16 | 1 | | Carbon disulfide | <5.0 | | 5.0 | 0.43 | ug/L | | | 12/19/13 18:16 | 1 | | Acetone | <20 | | 20 | 1.3 | ug/L | | | 12/19/13 18:16 | 1 | | Methylene Chloride | <10 | | 10 | 0.68 | ug/L | | | 12/19/13 18:16 | 1 | | trans-1,2-Dichloroethene | <5.0 | | 5.0 | 0.25 | ug/L | | | 12/19/13 18:16 | 1 | | 1,1-Dichloroethane | 5.9 | | 5.0 | 0.19 | ug/L | | | 12/19/13 18:16 | 1 | | cis-1,2-Dichloroethene | 32 | | 5.0 | 0.12 | ug/L | | | 12/19/13 18:16 | 1 | | Methyl Ethyl Ketone | <20 | | 20 | 1.5 | ug/L | | | 12/19/13 18:16 | 1 | | Chloroform | <5.0 | | 5.0 | 0.20 | ug/L | | | 12/19/13 18:16 | 1 | | 1,1,1-Trichloroethane | 11 | | 5.0 | 0.20 | ug/L | | | 12/19/13 18:16 | 1 | | Carbon tetrachloride | <5.0 | | 5.0 | 0.26 | ug/L | | | 12/19/13 18:16 | 1 | | 1,2-Dichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/19/13 18:16 | 1 | | Trichloroethene | 130 | | 5.0 | 0.19 | ug/L | | | 12/19/13 18:16 | 1 | | 1,2-Dichloropropane | <5.0 | | 5.0 | 0.20 | ug/L | | | 12/19/13 18:16 | 1 | | Bromodichloromethane | <5.0 | | 5.0 | 0.17 | ug/L | | | 12/19/13 18:16 | 1 | | cis-1,3-Dichloropropene | <5.0 | | 5.0 | 0.18 | ug/L | | | 12/19/13 18:16 | 1 | | methyl isobutyl ketone | <20 | | 20 | 0.33 | ug/L | | | 12/19/13 18:16 | 1 | | Toluene | <5.0 | | 5.0 | 0.11 | ug/L | | | 12/19/13 18:16 | 1 | | trans-1,3-Dichloropropene | <5.0 | | 5.0 | 0.21 | ug/L | | | 12/19/13 18:16 | 1 | | 1,1,2-Trichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/19/13 18:16 | 1 | | Tetrachloroethene | 35 | | 5.0 | 0.17 | ug/L | | | 12/19/13 18:16 | 1 | | 2-Hexanone | <20 | | 20 | 0.56 | ug/L | | | 12/19/13 18:16 | 1 | | Dibromochloromethane | <5.0 | | 5.0 | 0.32 | ug/L | | | 12/19/13 18:16 | 1 | | Chlorobenzene | <5.0 | | 5.0 | 0.14 | ug/L | | | 12/19/13 18:16 | 1 | | Ethylbenzene | <5.0 | | 5.0 | 0.13 | ug/L | | | 12/19/13 18:16 | 1 | | Styrene | <5.0 | | 5.0 | 0.10 | ug/L | | | 12/19/13 18:16 | 1 | | Bromoform | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/19/13 18:16 | 1 | | 1,1,2,2-Tetrachloroethane | <5.0 | | 5.0 | 0.23 | ug/L | | | 12/19/13 18:16 | 1 | | Xylenes, Total | <5.0 | | 5.0 | 0.068 | ug/L | | | 12/19/13 18:16 | 1 | | Surrogate | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | 1,2-Dichloroethane-d4 (Surr) | 103 | | 75 - 125 | | | - | | 12/19/13 18:16 | 1 | | Toluene-d8 (Surr) | 107 | | 75 - 120 | | | | | 12/19/13 18:16 | 1 | | 4-Bromofluorobenzene (Surr) | 97 | | 75 - 120 | | | | | 12/19/13 18:16 | 1 | | Dibromofluoromethane | 105 | | 75 - 120 | | | | | 12/19/13 18:16 | | 12/20/2013 3 5 7 9 11 13 15 10 Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-68720-1 Lab Sample ID: 500-68720-6 Matrix: Water Client Sample ID: IPC GW MW4 Date Collected: 12/16/13 13:57 Date Received: 12/17/13 10:30 | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |------------------------------|-----------|-----------|----------|-------|------|---|----------|----------------|---------| | Benzene | <5.0 | | 5.0 | 0.074 | ug/L | | | 12/19/13 18:40 | | | Chloromethane | <5.0 | | 5.0 | 0.18 | ug/L | | | 12/19/13 18:40 | | | Vinyl chloride | 31 | | 2.0 | 0.10 | ug/L | | | 12/19/13 18:40 | | | Bromomethane | <5.0 | | 5.0 | 0.31 | ug/L | | | 12/19/13 18:40 | | | Chloroethane | <5.0 | | 5.0 | 0.34 | ug/L | | | 12/19/13 18:40 | | | 1,1-Dichloroethene | <5.0 | | 5.0 | 0.31 | ug/L | | | 12/19/13 18:40 | • | | Carbon disulfide | <5.0 | | 5.0 | 0.43 | ug/L | | | 12/19/13 18:40 | | | Acetone | <20 | | 20 | 1.3 | ug/L | | | 12/19/13 18:40 | | | Methylene Chloride | <10 | | 10 | 0.68 | ug/L | | | 12/19/13 18:40 | | | trans-1,2-Dichloroethene | <5.0 | | 5.0 | 0.25 | ug/L | | | 12/19/13 18:40 | | | 1,1-Dichloroethane | 6.9 | | 5.0 | 0.19 | ug/L | | | 12/19/13 18:40 | | | cis-1,2-Dichloroethene | 58 | | 5.0 | 0.12 | ug/L | | | 12/19/13 18:40 | | | Methyl Ethyl Ketone | <20 | | 20 | 1.5 | ug/L | | | 12/19/13 18:40 | | | Chloroform | <5.0 | | 5.0 | 0.20 | ug/L | | | 12/19/13 18:40 | • | | 1,1,1-Trichloroethane | 8.2 | | 5.0 | 0.20 | ug/L | | | 12/19/13 18:40 | | | Carbon tetrachloride | <5.0 | | 5.0 | 0.26 | ug/L | | | 12/19/13 18:40 | | | 1,2-Dichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/19/13 18:40 | • | | Trichloroethene | <5.0 | | 5.0 | 0.19 | ug/L | | | 12/19/13 18:40 | • | | 1,2-Dichloropropane | <5.0 | | 5.0 | 0.20 | ug/L | | | 12/19/13 18:40 | | | Bromodichloromethane | <5.0 | | 5.0 | 0.17 | ug/L | | | 12/19/13 18:40 | • | | cis-1,3-Dichloropropene | <5.0 | | 5.0 | 0.18 | ug/L | | | 12/19/13 18:40 | • | | methyl isobutyl ketone | <20 | | 20 | 0.33 | ug/L | | | 12/19/13 18:40 | | | Toluene | <5.0 | | 5.0 | 0.11 | ug/L | | | 12/19/13 18:40 | • | | trans-1,3-Dichloropropene | <5.0 | | 5.0 | 0.21 | ug/L | | | 12/19/13 18:40 | • | | 1,1,2-Trichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/19/13 18:40 | • | | Tetrachloroethene | <5.0 | | 5.0 | 0.17 | ug/L | | | 12/19/13 18:40 | • | | 2-Hexanone | <20 | | 20 | 0.56 | ug/L | | | 12/19/13 18:40 | • | | Dibromochloromethane | <5.0 | | 5.0 | 0.32 | ug/L | | | 12/19/13 18:40 | • | | Chlorobenzene | <5.0 | | 5.0 | 0.14 | ug/L | | | 12/19/13 18:40 | • | | Ethylbenzene | <5.0 | | 5.0 | 0.13 | ug/L | | | 12/19/13 18:40 | • | | Styrene | <5.0 | | 5.0 | 0.10 | ug/L | | | 12/19/13 18:40 | | | Bromoform | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/19/13 18:40 | • | | 1,1,2,2-Tetrachloroethane | <5.0 | | 5.0 | 0.23 | ug/L | | | 12/19/13 18:40 | | | Xylenes, Total | <5.0 | | 5.0 | 0.068 | ug/L | | | 12/19/13 18:40 | | | Surrogate | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fa | | 1,2-Dichloroethane-d4 (Surr) | 103 | | 75 - 125 | | | - | | 12/19/13 18:40 | | | Toluene-d8 (Surr) | 106 | | 75 - 120 | | | | | 12/19/13 18:40 | 1 | | 4-Bromofluorobenzene (Surr) | 95 | | 75 - 120 | | | | | 12/19/13 18:40 | | | Dibromofluoromethane | 103 | | 75 - 120 | | | | | 12/19/13 18:40 | | Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-68720-1 Lab Sample ID: 500-68720-7 Matrix: Water **Client Sample ID: IPC GW MW3** Date Collected: 12/16/13 14:30 Date Received: 12/17/13 10:30 | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |------------------------------|-----------|-----------|----------|-------|------|---|----------|----------------|---------| | Benzene | <5.0 | | 5.0 | 0.074 | ug/L | | | 12/19/13 22:57 | 1 | | Chloromethane | <5.0 | | 5.0 | 0.18 | ug/L | | | 12/19/13 22:57 | 1 | | Vinyl chloride | <2.0 | | 2.0 | 0.10 | ug/L | | | 12/19/13 22:57 | 1 | | Bromomethane | <5.0 | | 5.0 | 0.31 | ug/L | | | 12/19/13 22:57 | 1 | | Chloroethane | <5.0 | | 5.0 | 0.34 | ug/L | | | 12/19/13 22:57 | 1 | | 1,1-Dichloroethene | 11 | | 5.0 | 0.31 | ug/L | | | 12/19/13 22:57 | 1 | | Carbon disulfide | <5.0 | | 5.0 | 0.43 | ug/L | | | 12/19/13 22:57 | 1 | | Acetone | <20 | | 20 | 1.3 | ug/L | | | 12/19/13 22:57 | 1 | | Methylene Chloride | <10 | | 10 | 0.68 | ug/L | | | 12/19/13 22:57 | 1 | | trans-1,2-Dichloroethene | <5.0 | | 5.0 | 0.25 | ug/L | | | 12/19/13 22:57 | 1 | | 1,1-Dichloroethane | <5.0 | | 5.0 | 0.19 | ug/L | | | 12/19/13 22:57 | 1 | | cis-1,2-Dichloroethene | 27 | | 5.0 | 0.12 | ug/L | | | 12/19/13 22:57 | 1 | | Methyl Ethyl Ketone | <20 | | 20 | 1.5 | ug/L | | | 12/19/13 22:57 | 1 | | Chloroform | <5.0 | | 5.0 | 0.20 | ug/L | | | 12/19/13 22:57 | 1 | | 1,1,1-Trichloroethane | 11 | | 5.0 | 0.20 | ug/L | | | 12/19/13 22:57 | 1 | | Carbon tetrachloride | <5.0 | | 5.0 | 0.26 | ug/L | | | 12/19/13 22:57 | 1 | | 1,2-Dichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/19/13 22:57 | 1 | | Trichloroethene | 180 | | 5.0 | 0.19 | ug/L | | | 12/19/13 22:57 | 1 | | 1,2-Dichloropropane | <5.0 | | 5.0 | 0.20 | ug/L | | | 12/19/13 22:57 | 1 | | Bromodichloromethane | <5.0 | | 5.0 | 0.17 | ug/L | | | 12/19/13 22:57 | 1 | | cis-1,3-Dichloropropene | <5.0 | | 5.0 | 0.18 | ug/L | | | 12/19/13 22:57 | 1 | | methyl isobutyl ketone | <20 | | 20 | 0.33 | ug/L | | | 12/19/13 22:57 | 1 | | Toluene | <5.0 | | 5.0 | 0.11 | ug/L | | | 12/19/13 22:57 | 1 | | trans-1,3-Dichloropropene | <5.0 | | 5.0 | 0.21 | ug/L | | | 12/19/13 22:57 | 1 | | 1,1,2-Trichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/19/13 22:57 | 1 | | Tetrachloroethene | 35 | | 5.0 | 0.17 | ug/L | | | 12/19/13 22:57 | 1 | | 2-Hexanone | <20 | | 20 | 0.56 | ug/L | | | 12/19/13 22:57 | 1 | | Dibromochloromethane | <5.0 | | 5.0 | 0.32 | ug/L | | | 12/19/13 22:57 | 1 | | Chlorobenzene | <5.0 | | 5.0 | 0.14 | ug/L | | | 12/19/13 22:57 | 1 | | Ethylbenzene | <5.0 | | 5.0 | 0.13 | ug/L | | | 12/19/13 22:57 | 1 | | Styrene | <5.0 | | 5.0 | 0.10 | ug/L | | | 12/19/13 22:57 | 1 | | Bromoform | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/19/13 22:57 | 1 | | 1,1,2,2-Tetrachloroethane | <5.0 | | 5.0 | 0.23 | ug/L | | | 12/19/13 22:57 | 1 | | Xylenes, Total | <5.0 | | 5.0 | 0.068 | ug/L | | | 12/19/13 22:57 | 1 | | Surrogate | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | 1,2-Dichloroethane-d4 (Surr) | 102 | | 75 - 125 | | | - | | 12/19/13 22:57 | 1 | | Toluene-d8 (Surr) | 109 | | 75 - 120 | | | | | 12/19/13 22:57 | 1 | | 4-Bromofluorobenzene (Surr) | 96 | | 75 - 120 | | | | | 12/19/13 22:57 | 1 | | Dibromofluoromethane | 104 | | 75 - 120 | | | | | 12/19/13 22:57 | 1 | Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-68720-1 Lab Sample ID: 500-68720-8 Matrix: Water Client Sample ID: IPC GW
MW2 Date Collected: 12/16/13 15:00 Date Received: 12/17/13 10:30 | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |------------------------------|-----------|-----------|----------|-------|------|---|----------|----------------|---------| | Benzene | <5.0 | | 5.0 | 0.074 | ug/L | | | 12/19/13 23:46 | 1 | | Chloromethane | <5.0 | | 5.0 | 0.18 | ug/L | | | 12/19/13 23:46 | 1 | | Vinyl chloride | 4.2 | | 2.0 | 0.10 | ug/L | | | 12/19/13 23:46 | 1 | | Bromomethane | <5.0 | | 5.0 | 0.31 | ug/L | | | 12/19/13 23:46 | 1 | | Chloroethane | <5.0 | | 5.0 | 0.34 | ug/L | | | 12/19/13 23:46 | 1 | | 1,1-Dichloroethene | 12 | | 5.0 | 0.31 | ug/L | | | 12/19/13 23:46 | 1 | | Carbon disulfide | <5.0 | | 5.0 | 0.43 | ug/L | | | 12/19/13 23:46 | 1 | | Acetone | <20 | | 20 | 1.3 | ug/L | | | 12/19/13 23:46 | 1 | | Methylene Chloride | <10 | | 10 | 0.68 | ug/L | | | 12/19/13 23:46 | 1 | | trans-1,2-Dichloroethene | <5.0 | | 5.0 | 0.25 | ug/L | | | 12/19/13 23:46 | 1 | | 1,1-Dichloroethane | <5.0 | | 5.0 | 0.19 | ug/L | | | 12/19/13 23:46 | 1 | | cis-1,2-Dichloroethene | 50 | | 5.0 | 0.12 | ug/L | | | 12/19/13 23:46 | 1 | | Methyl Ethyl Ketone | <20 | | 20 | 1.5 | ug/L | | | 12/19/13 23:46 | 1 | | Chloroform | <5.0 | | 5.0 | 0.20 | ug/L | | | 12/19/13 23:46 | 1 | | 1,1,1-Trichloroethane | 11 | | 5.0 | 0.20 | ug/L | | | 12/19/13 23:46 | 1 | | Carbon tetrachloride | <5.0 | | 5.0 | 0.26 | ug/L | | | 12/19/13 23:46 | | | 1,2-Dichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/19/13 23:46 | 1 | | Trichloroethene | 170 | | 5.0 | 0.19 | ug/L | | | 12/19/13 23:46 | 1 | | 1,2-Dichloropropane | <5.0 | | 5.0 | 0.20 | ug/L | | | 12/19/13 23:46 | 1 | | Bromodichloromethane | <5.0 | | 5.0 | 0.17 | ug/L | | | 12/19/13 23:46 | 1 | | cis-1,3-Dichloropropene | <5.0 | | 5.0 | 0.18 | ug/L | | | 12/19/13 23:46 | 1 | | methyl isobutyl ketone | <20 | | 20 | 0.33 | ug/L | | | 12/19/13 23:46 | 1 | | Toluene | <5.0 | | 5.0 | 0.11 | ug/L | | | 12/19/13 23:46 | 1 | | trans-1,3-Dichloropropene | <5.0 | | 5.0 | 0.21 | ug/L | | | 12/19/13 23:46 | 1 | | 1,1,2-Trichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/19/13 23:46 | 1 | | Tetrachloroethene | 31 | | 5.0 | 0.17 | ug/L | | | 12/19/13 23:46 | 1 | | 2-Hexanone | <20 | | 20 | 0.56 | ug/L | | | 12/19/13 23:46 | 1 | | Dibromochloromethane | <5.0 | | 5.0 | 0.32 | ug/L | | | 12/19/13 23:46 | 1 | | Chlorobenzene | <5.0 | | 5.0 | 0.14 | ug/L | | | 12/19/13 23:46 | 1 | | Ethylbenzene | <5.0 | | 5.0 | 0.13 | ug/L | | | 12/19/13 23:46 | 1 | | Styrene | <5.0 | | 5.0 | 0.10 | ug/L | | | 12/19/13 23:46 | 1 | | Bromoform | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/19/13 23:46 | 1 | | 1,1,2,2-Tetrachloroethane | <5.0 | | 5.0 | 0.23 | ug/L | | | 12/19/13 23:46 | 1 | | Xylenes, Total | <5.0 | | 5.0 | 0.068 | ug/L | | | 12/19/13 23:46 | 1 | | Surrogate | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | 1,2-Dichloroethane-d4 (Surr) | 104 | | 75 - 125 | | | - | | 12/19/13 23:46 | 1 | | Toluene-d8 (Surr) | 107 | | 75 - 120 | | | | | 12/19/13 23:46 | 1 | | 4-Bromofluorobenzene (Surr) | 98 | | 75 - 120 | | | | | 12/19/13 23:46 | 1 | | Dibromofluoromethane | 104 | | 75 - 120 | | | | | 12/19/13 23:46 | 1 | Page 15 of 33 2 - 5 46 11 4 4 Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-68720-1 Lab Sample ID: 500-68720-9 Matrix: Water Client Sample ID: IPC GW MW1 Date Collected: 12/16/13 15:26 Date Received: 12/17/13 10:30 | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |------------------------------|-----------|-----------|----------|-------|------|---|----------|----------------|---------| | Benzene | <5.0 | | 5.0 | 0.074 | ug/L | | | 12/20/13 00:36 | 1 | | Chloromethane | <5.0 | | 5.0 | 0.18 | ug/L | | | 12/20/13 00:36 | 1 | | Vinyl chloride | 14 | | 2.0 | 0.10 | ug/L | | | 12/20/13 00:36 | 1 | | Bromomethane | <5.0 | | 5.0 | 0.31 | ug/L | | | 12/20/13 00:36 | 1 | | Chloroethane | <5.0 | | 5.0 | 0.34 | ug/L | | | 12/20/13 00:36 | 1 | | 1,1-Dichloroethene | 13 | | 5.0 | 0.31 | ug/L | | | 12/20/13 00:36 | 1 | | Carbon disulfide | <5.0 | | 5.0 | 0.43 | ug/L | | | 12/20/13 00:36 | 1 | | Acetone | <20 | | 20 | 1.3 | ug/L | | | 12/20/13 00:36 | 1 | | Methylene Chloride | <10 | | 10 | 0.68 | ug/L | | | 12/20/13 00:36 | 1 | | trans-1,2-Dichloroethene | <5.0 | | 5.0 | 0.25 | ug/L | | | 12/20/13 00:36 | 1 | | 1,1-Dichloroethane | 14 | | 5.0 | 0.19 | ug/L | | | 12/20/13 00:36 | 1 | | cis-1,2-Dichloroethene | 170 | | 5.0 | 0.12 | ug/L | | | 12/20/13 00:36 | 1 | | Methyl Ethyl Ketone | <20 | | 20 | 1.5 | ug/L | | | 12/20/13 00:36 | 1 | | Chloroform | <5.0 | | 5.0 | 0.20 | ug/L | | | 12/20/13 00:36 | 1 | | 1,1,1-Trichloroethane | 5.2 | | 5.0 | 0.20 | ug/L | | | 12/20/13 00:36 | 1 | | Carbon tetrachloride | <5.0 | | 5.0 | 0.26 | ug/L | | | 12/20/13 00:36 | 1 | | 1,2-Dichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/20/13 00:36 | 1 | | Trichloroethene | 11 | | 5.0 | 0.19 | ug/L | | | 12/20/13 00:36 | 1 | | 1,2-Dichloropropane | <5.0 | | 5.0 | 0.20 | ug/L | | | 12/20/13 00:36 | 1 | | Bromodichloromethane | <5.0 | | 5.0 | 0.17 | ug/L | | | 12/20/13 00:36 | 1 | | cis-1,3-Dichloropropene | <5.0 | | 5.0 | 0.18 | ug/L | | | 12/20/13 00:36 | 1 | | methyl isobutyl ketone | <20 | | 20 | 0.33 | ug/L | | | 12/20/13 00:36 | 1 | | Toluene | <5.0 | | 5.0 | 0.11 | ug/L | | | 12/20/13 00:36 | 1 | | trans-1,3-Dichloropropene | <5.0 | | 5.0 | 0.21 | ug/L | | | 12/20/13 00:36 | 1 | | 1,1,2-Trichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/20/13 00:36 | 1 | | Tetrachloroethene | <5.0 | | 5.0 | 0.17 | ug/L | | | 12/20/13 00:36 | 1 | | 2-Hexanone | <20 | | 20 | 0.56 | ug/L | | | 12/20/13 00:36 | 1 | | Dibromochloromethane | <5.0 | | 5.0 | 0.32 | ug/L | | | 12/20/13 00:36 | 1 | | Chlorobenzene | <5.0 | | 5.0 | 0.14 | ug/L | | | 12/20/13 00:36 | 1 | | Ethylbenzene | <5.0 | | 5.0 | 0.13 | ug/L | | | 12/20/13 00:36 | 1 | | Styrene | <5.0 | | 5.0 | 0.10 | ug/L | | | 12/20/13 00:36 | 1 | | Bromoform | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/20/13 00:36 | 1 | | 1,1,2,2-Tetrachloroethane | <5.0 | | 5.0 | 0.23 | ug/L | | | 12/20/13 00:36 | 1 | | Xylenes, Total | <5.0 | | 5.0 | 0.068 | | | | 12/20/13 00:36 | 1 | | Surrogate | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | 1,2-Dichloroethane-d4 (Surr) | 103 | | 75 - 125 | | | - | | 12/20/13 00:36 | 1 | | Toluene-d8 (Surr) | 107 | | 75 - 120 | | | | | 12/20/13 00:36 | 1 | | 4-Bromofluorobenzene (Surr) | 95 | | 75 - 120 | | | | | 12/20/13 00:36 | 1 | | Dibromofluoromethane | 104 | | 75 - 120 | | | | | 12/20/13 00:36 | 1 | 3 4 6 9 11 Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-68720-1 Lab Sample ID: 500-68720-10 **Matrix: Water** Client Sample ID: F.B. Date Collected: 12/16/13 15:45 Date Received: 12/17/13 10:30 | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |------------------------------|-----------|-----------|----------|-------|------|---|----------|----------------|---------| | Benzene | <5.0 | | 5.0 | 0.074 | ug/L | | | 12/20/13 01:00 | 1 | | Chloromethane | <5.0 | | 5.0 | 0.18 | ug/L | | | 12/20/13 01:00 | 1 | | Vinyl chloride | <2.0 | | 2.0 | 0.10 | ug/L | | | 12/20/13 01:00 | 1 | | Bromomethane | <5.0 | | 5.0 | 0.31 | ug/L | | | 12/20/13 01:00 | 1 | | Chloroethane | <5.0 | | 5.0 | 0.34 | ug/L | | | 12/20/13 01:00 | 1 | | 1,1-Dichloroethene | <5.0 | | 5.0 | 0.31 | ug/L | | | 12/20/13 01:00 | 1 | | Carbon disulfide | <5.0 | | 5.0 | 0.43 | ug/L | | | 12/20/13 01:00 | 1 | | Acetone | <20 | | 20 | 1.3 | ug/L | | | 12/20/13 01:00 | 1 | | Methylene Chloride | <10 | | 10 | 0.68 | ug/L | | | 12/20/13 01:00 | 1 | | trans-1,2-Dichloroethene | <5.0 | | 5.0 | 0.25 | ug/L | | | 12/20/13 01:00 | 1 | | 1,1-Dichloroethane | <5.0 | | 5.0 | 0.19 | ug/L | | | 12/20/13 01:00 | 1 | | cis-1,2-Dichloroethene | <5.0 | | 5.0 | 0.12 | ug/L | | | 12/20/13 01:00 | 1 | | Methyl Ethyl Ketone | <20 | | 20 | 1.5 | ug/L | | | 12/20/13 01:00 | 1 | | Chloroform | <5.0 | | 5.0 | 0.20 | ug/L | | | 12/20/13 01:00 | 1 | | 1,1,1-Trichloroethane | <5.0 | | 5.0 | 0.20 | ug/L | | | 12/20/13 01:00 | 1 | | Carbon tetrachloride | <5.0 | | 5.0 | 0.26 | ug/L | | | 12/20/13 01:00 | 1 | | 1,2-Dichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/20/13 01:00 | 1 | | Trichloroethene | <5.0 | | 5.0 | 0.19 | ug/L | | | 12/20/13 01:00 | 1 | | 1,2-Dichloropropane | <5.0 | | 5.0 | 0.20 | ug/L | | | 12/20/13 01:00 | 1 | | Bromodichloromethane | <5.0 | | 5.0 | 0.17 | ug/L | | | 12/20/13 01:00 | 1 | | cis-1,3-Dichloropropene | <5.0 | | 5.0 | 0.18 | ug/L | | | 12/20/13 01:00 | 1 | | methyl isobutyl ketone | <20 | | 20 | 0.33 | ug/L | | | 12/20/13 01:00 | 1 | | Toluene | <5.0 | | 5.0 | 0.11 | ug/L | | | 12/20/13 01:00 | 1 | | trans-1,3-Dichloropropene | <5.0 | | 5.0 | 0.21 | ug/L | | | 12/20/13 01:00 | 1 | | 1,1,2-Trichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/20/13 01:00 | 1 | | Tetrachloroethene | <5.0 | | 5.0 | 0.17 | ug/L | | | 12/20/13 01:00 | 1 | | 2-Hexanone | <20 | | 20 | 0.56 | ug/L | | | 12/20/13 01:00 | 1 | | Dibromochloromethane | <5.0 | | 5.0 | 0.32 | ug/L | | | 12/20/13 01:00 | 1 | | Chlorobenzene | <5.0 | | 5.0 | 0.14 | ug/L | | | 12/20/13 01:00 | 1 | | Ethylbenzene | <5.0 | | 5.0 | 0.13 | ug/L | | | 12/20/13 01:00 | 1 | | Styrene | <5.0 | | 5.0 | 0.10 | ug/L | | | 12/20/13 01:00 | 1 | | Bromoform | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/20/13 01:00 | 1 | | 1,1,2,2-Tetrachloroethane | <5.0 | | 5.0 | 0.23 | ug/L | | | 12/20/13 01:00 | 1 | | Xylenes, Total | <5.0 | | 5.0 | 0.068 | ug/L | | | 12/20/13 01:00 | 1 | | Surrogate | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | 1,2-Dichloroethane-d4 (Surr) | 102 | | 75 - 125 | | | - | | 12/20/13 01:00 | 1 | | Toluene-d8 (Surr) | 107 | | 75 - 120 | | | | | 12/20/13 01:00 | 1 | | 4-Bromofluorobenzene (Surr) | 96 | | 75 - 120 | | | | | 12/20/13 01:00 | 1 | | Dibromofluoromethane | 103 | | 75
- 120 | | | | | 12/20/13 01:00 | | Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-68720-1 Lab Sample ID: 500-68720-11 Matrix: Water Client Sample ID: Trip Blank Date Collected: 12/16/13 00:00 Date Received: 12/17/13 10:30 | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |------------------------------|-----------|-----------|----------|-------|------|---|----------|----------------|---------| | Benzene | <5.0 | | 5.0 | 0.074 | ug/L | | | 12/19/13 19:05 | 1 | | Chloromethane | <5.0 | | 5.0 | 0.18 | ug/L | | | 12/19/13 19:05 | 1 | | Vinyl chloride | <2.0 | | 2.0 | 0.10 | ug/L | | | 12/19/13 19:05 | 1 | | Bromomethane | <5.0 | | 5.0 | 0.31 | ug/L | | | 12/19/13 19:05 | 1 | | Chloroethane | <5.0 | | 5.0 | 0.34 | ug/L | | | 12/19/13 19:05 | 1 | | 1,1-Dichloroethene | <5.0 | | 5.0 | 0.31 | ug/L | | | 12/19/13 19:05 | 1 | | Carbon disulfide | <5.0 | | 5.0 | 0.43 | ug/L | | | 12/19/13 19:05 | 1 | | Acetone | <20 | | 20 | 1.3 | ug/L | | | 12/19/13 19:05 | 1 | | Methylene Chloride | <10 | | 10 | 0.68 | ug/L | | | 12/19/13 19:05 | 1 | | trans-1,2-Dichloroethene | <5.0 | | 5.0 | 0.25 | ug/L | | | 12/19/13 19:05 | 1 | | 1,1-Dichloroethane | <5.0 | | 5.0 | 0.19 | ug/L | | | 12/19/13 19:05 | 1 | | cis-1,2-Dichloroethene | <5.0 | | 5.0 | 0.12 | ug/L | | | 12/19/13 19:05 | 1 | | Methyl Ethyl Ketone | <20 | | 20 | 1.5 | ug/L | | | 12/19/13 19:05 | 1 | | Chloroform | <5.0 | | 5.0 | 0.20 | ug/L | | | 12/19/13 19:05 | 1 | | 1,1,1-Trichloroethane | <5.0 | | 5.0 | 0.20 | ug/L | | | 12/19/13 19:05 | 1 | | Carbon tetrachloride | <5.0 | | 5.0 | 0.26 | ug/L | | | 12/19/13 19:05 | 1 | | 1,2-Dichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/19/13 19:05 | 1 | | Trichloroethene | <5.0 | | 5.0 | 0.19 | ug/L | | | 12/19/13 19:05 | 1 | | 1,2-Dichloropropane | <5.0 | | 5.0 | 0.20 | ug/L | | | 12/19/13 19:05 | 1 | | Bromodichloromethane | <5.0 | | 5.0 | 0.17 | ug/L | | | 12/19/13 19:05 | 1 | | cis-1,3-Dichloropropene | <5.0 | | 5.0 | 0.18 | ug/L | | | 12/19/13 19:05 | 1 | | methyl isobutyl ketone | <20 | | 20 | 0.33 | ug/L | | | 12/19/13 19:05 | 1 | | Toluene | <5.0 | | 5.0 | 0.11 | ug/L | | | 12/19/13 19:05 | 1 | | trans-1,3-Dichloropropene | <5.0 | | 5.0 | 0.21 | ug/L | | | 12/19/13 19:05 | 1 | | 1,1,2-Trichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/19/13 19:05 | 1 | | Tetrachloroethene | <5.0 | | 5.0 | 0.17 | ug/L | | | 12/19/13 19:05 | 1 | | 2-Hexanone | <20 | | 20 | 0.56 | ug/L | | | 12/19/13 19:05 | 1 | | Dibromochloromethane | <5.0 | | 5.0 | 0.32 | ug/L | | | 12/19/13 19:05 | 1 | | Chlorobenzene | <5.0 | | 5.0 | 0.14 | ug/L | | | 12/19/13 19:05 | 1 | | Ethylbenzene | <5.0 | | 5.0 | 0.13 | ug/L | | | 12/19/13 19:05 | 1 | | Styrene | <5.0 | | 5.0 | 0.10 | ug/L | | | 12/19/13 19:05 | 1 | | Bromoform | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/19/13 19:05 | 1 | | 1,1,2,2-Tetrachloroethane | <5.0 | | 5.0 | 0.23 | ug/L | | | 12/19/13 19:05 | 1 | | Xylenes, Total | <5.0 | | 5.0 | 0.068 | ug/L | | | 12/19/13 19:05 | 1 | | Surrogate | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | 1,2-Dichloroethane-d4 (Surr) | 102 | | 75 - 125 | | | - | | 12/19/13 19:05 | 1 | | Toluene-d8 (Surr) | 105 | | 75 - 120 | | | | | 12/19/13 19:05 | 1 | | 4-Bromofluorobenzene (Surr) | 93 | | 75 - 120 | | | | | 12/19/13 19:05 | 1 | | Dibromofluoromethane | 102 | | 75 - 120 | | | | | 12/19/13 19:05 | 1 | 5 7 9 11 13 1 E ## **Definitions/Glossary** Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-68720-1 ## **Glossary** | Abbreviation | These commonly used abbreviations may or may not be present in this report. | |----------------|---| | а | Listed under the "D" column to designate that the result is reported on a dry weight basis | | %R | Percent Recovery | | CNF | Contains no Free Liquid | | DER | Duplicate error ratio (normalized absolute difference) | | Dil Fac | Dilution Factor | | DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample | | DLC | Decision level concentration | | MDA | Minimum detectable activity | | EDL | Estimated Detection Limit | | MDC | Minimum detectable concentration | | MDL | Method Detection Limit | | ML | Minimum Level (Dioxin) | | NC | Not Calculated | | ND | Not detected at the reporting limit (or MDL or EDL if shown) | | PQL | Practical Quantitation Limit | | QC | Quality Control | | RER | Relative error ratio | | RL | Reporting Limit or Requested Limit (Radiochemistry) | | RPD | Relative Percent Difference, a measure of the relative difference between two points | | TEF | Toxicity Equivalent Factor (Dioxin) | | TEQ | Toxicity Equivalent Quotient (Dioxin) | 9 11 12 13 ## **QC Association Summary** Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-68720-1 #### **GC/MS VOA** #### Analysis Batch: 216908 | Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch | |------------------|--------------------|-----------|--------|--------|------------| | 500-68720-1 | IPC GW MW8 | Total/NA | Water | 8260B | | | 500-68720-2 | IPC GW MW9 | Total/NA | Water | 8260B | | | 500-68720-3 | IPC GW MW7 | Total/NA | Water | 8260B | | | 500-68720-4 | IPC GW MW6 | Total/NA | Water | 8260B | | | 500-68720-4 MS | IPC GW MW6 | Total/NA | Water | 8260B | | | 500-68720-4 MSD | IPC GW MW6 | Total/NA | Water | 8260B | | | 500-68720-5 | IPC GW MW5 | Total/NA | Water | 8260B | | | 500-68720-6 | IPC GW MW4 | Total/NA | Water | 8260B | | | 500-68720-11 | Trip Blank | Total/NA | Water | 8260B | | | LCS 500-216908/4 | Lab Control Sample | Total/NA | Water | 8260B | | | MB 500-216908/6 | Method Blank | Total/NA | Water | 8260B | | #### Analysis Batch: 216976 | Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch | |------------------|--------------------|-----------|--------|--------|------------| | 500-68720-7 | IPC GW MW3 | Total/NA | Water | 8260B | _ | | 500-68720-8 | IPC GW MW2 | Total/NA | Water | 8260B | | | 500-68720-9 | IPC GW MW1 | Total/NA | Water | 8260B | | | 500-68720-10 | F.B. | Total/NA | Water | 8260B | | | LCS 500-216976/4 | Lab Control Sample | Total/NA | Water | 8260B | | | MB 500-216976/6 | Method Blank | Total/NA | Water | 8260B | | ## **Surrogate Summary** Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-68720-1 #### Method: 8260B - Volatile Organic Compounds (GC/MS) Matrix: Water Prep Type: Total/NA | | | | | Percent Su | rrogate Reco | |------------------|--------------------|----------|----------|------------|--------------| | | | 12DCE | TOL | BFB | DBFM | | Lab Sample ID | Client Sample ID | (75-125) | (75-120) | (75-120) | (75-120) | | 500-68720-1 | IPC GW MW8 | 105 | 106 | 96 | 101 | | 500-68720-2 | IPC GW MW9 | 106 | 107 | 96 | 106 | | 500-68720-3 | IPC GW MW7 | 104 | 105 | 99 | 104 | | 500-68720-4 | IPC GW MW6 | 103 | 106 | 96 | 104 | | 500-68720-4 MS | IPC GW MW6 | 99 | 106 | 105 | 100 | | 500-68720-4 MSD | IPC GW MW6 | 98 | 106 | 106 | 100 | | 500-68720-5 | IPC GW MW5 | 103 | 107 | 97 | 105 | | 500-68720-6 | IPC GW MW4 | 103 | 106 | 95 | 103 | | 500-68720-7 | IPC GW MW3 | 102 | 109 | 96 | 104 | | 500-68720-8 | IPC GW MW2 | 104 | 107 | 98 | 104 | | 500-68720-9 | IPC GW MW1 | 103 | 107 | 95 | 104 | | 500-68720-10 | F.B. | 102 | 107 | 96 | 103 | | 500-68720-11 | Trip Blank | 102 | 105 | 93 | 102 | | LCS 500-216908/4 | Lab Control Sample | 100 | 106 | 105 | 100 | | LCS 500-216976/4 | Lab Control Sample | 98 | 107 | 102 | 99 | | MB 500-216908/6 | Method Blank | 101 | 108 | 99 | 103 | | MB 500-216976/6 | Method Blank | 103 | 108 | 98 | 103 | #### Surrogate Legend 12DCE = 1,2-Dichloroethane-d4 (Surr) TOL = Toluene-d8 (Surr) BFB = 4-Bromofluorobenzene (Surr) DBFM = Dibromofluoromethane Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site #### Method: 8260B - Volatile Organic Compounds (GC/MS) Lab Sample ID: MB 500-216908/6 **Matrix: Water** Analysis Batch: 216908 Client Sample ID: Method Blank | | ••• | |--------------------|-----| | Prep Type: Total/N | A | | | MB | MB | | | | | | | | |---------------------------|--------|-----------|-----|-------|------|---|----------|----------------|---------| | Analyte | Result | Qualifier | RL | MDL | | D | Prepared | Analyzed | Dil Fac | | Benzene | <5.0 | | 5.0 | 0.074 | ug/L | | | 12/19/13 10:02 | 1 | | Chloromethane | <5.0 | | 5.0 | 0.18 | ug/L | | | 12/19/13 10:02 | 1 | | Vinyl chloride | <2.0 | | 2.0 | 0.10 | ug/L | | | 12/19/13 10:02 | 1 | | Bromomethane | <5.0 | | 5.0 | 0.31 | ug/L | | | 12/19/13 10:02 | 1 | | Chloroethane | <5.0 | | 5.0 | 0.34 | ug/L | | | 12/19/13 10:02 | 1 | | 1,1-Dichloroethene | <5.0 | | 5.0 | 0.31 | ug/L | | | 12/19/13 10:02 | 1 | | Carbon disulfide | <5.0 | | 5.0 | 0.43 | ug/L | | | 12/19/13 10:02 | 1 | | Acetone | <20 | | 20 | 1.3 | ug/L | | | 12/19/13 10:02 | 1 | | Methylene Chloride | <10 | | 10 | 0.68 | ug/L | | | 12/19/13 10:02 | 1 | | trans-1,2-Dichloroethene | <5.0 | | 5.0 | 0.25 | ug/L | | | 12/19/13 10:02 | 1 | | 1,1-Dichloroethane | <5.0 | | 5.0 | 0.19 | ug/L | | | 12/19/13 10:02 | 1 | | cis-1,2-Dichloroethene | <5.0 | | 5.0 | 0.12 | ug/L | | | 12/19/13 10:02 | 1 | | Methyl Ethyl Ketone | <20 | | 20 | 1.5 | ug/L | | | 12/19/13 10:02 | 1 | | Chloroform | <5.0 | | 5.0 | 0.20 | ug/L | | | 12/19/13 10:02 | 1 | | 1,1,1-Trichloroethane | <5.0 | | 5.0 | 0.20 | ug/L | | | 12/19/13 10:02 | 1 | | Carbon tetrachloride | <5.0 | | 5.0 | 0.26 | ug/L | | | 12/19/13 10:02 | 1 | | 1,2-Dichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/19/13 10:02 | 1 | | Trichloroethene | <5.0 | | 5.0 | 0.19 | ug/L | | | 12/19/13 10:02 | 1 | | 1,2-Dichloropropane | <5.0 | | 5.0 | 0.20 | ug/L | |
| 12/19/13 10:02 | 1 | | Bromodichloromethane | <5.0 | | 5.0 | 0.17 | ug/L | | | 12/19/13 10:02 | 1 | | cis-1,3-Dichloropropene | <5.0 | | 5.0 | 0.18 | ug/L | | | 12/19/13 10:02 | 1 | | methyl isobutyl ketone | <20 | | 20 | 0.33 | ug/L | | | 12/19/13 10:02 | 1 | | Toluene | <5.0 | | 5.0 | 0.11 | ug/L | | | 12/19/13 10:02 | 1 | | trans-1,3-Dichloropropene | <5.0 | | 5.0 | 0.21 | ug/L | | | 12/19/13 10:02 | 1 | | 1,1,2-Trichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/19/13 10:02 | 1 | | Tetrachloroethene | <5.0 | | 5.0 | 0.17 | ug/L | | | 12/19/13 10:02 | 1 | | 2-Hexanone | <20 | | 20 | 0.56 | ug/L | | | 12/19/13 10:02 | 1 | | Dibromochloromethane | <5.0 | | 5.0 | 0.32 | ug/L | | | 12/19/13 10:02 | 1 | | Chlorobenzene | <5.0 | | 5.0 | 0.14 | ug/L | | | 12/19/13 10:02 | 1 | | Ethylbenzene | <5.0 | | 5.0 | 0.13 | ug/L | | | 12/19/13 10:02 | 1 | | Styrene | <5.0 | | 5.0 | 0.10 | ug/L | | | 12/19/13 10:02 | 1 | | Bromoform | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/19/13 10:02 | 1 | | 1,1,2,2-Tetrachloroethane | <5.0 | | 5.0 | 0.23 | ug/L | | | 12/19/13 10:02 | 1 | | Xylenes, Total | <5.0 | | 5.0 | 0.068 | | | | 12/19/13 10:02 | 1 | | | MB | MB | | | | | |------------------------------|-----------|-----------|----------|----------|----------------|---------| | Surrogate | %Recovery | Qualifier | Limits | Prepared | Analyzed | Dil Fac | | 1,2-Dichloroethane-d4 (Surr) | 101 | | 75 - 125 | | 12/19/13 10:02 | 1 | | Toluene-d8 (Surr) | 108 | | 75 - 120 | | 12/19/13 10:02 | 1 | | 4-Bromofluorobenzene (Surr) | 99 | | 75 - 120 | | 12/19/13 10:02 | 1 | | Dibromofluoromethane | 103 | | 75 - 120 | | 12/19/13 10:02 | 1 | Lab Sample ID: LCS 500-216908/4 **Matrix: Water** Analysis Batch: 216908 | | Spike | LCS | LCS | | | | %Rec. | | |---------------|-------|--------|-----------|------|------|------|----------|--| | Analyte | Added | Result | Qualifier | Unit |) | %Rec | Limits | | | Benzene | 50.0 | 49.3 | | ug/L |
 | 99 | 70 - 120 | | | Chloromethane | 50.0 | 44.5 | | ug/L | | 89 | 50 - 134 | | TestAmerica Chicago Prep Type: Total/NA **Client Sample ID: Lab Control Sample** Page 22 of 33 Spike LCS LCS TestAmerica Job ID: 500-68720-1 Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site #### Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued) Lab Sample ID: LCS 500-216908/4 **Matrix: Water** Analysis Batch: 216908 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA %Rec. | | Opike | LOS | 200 | | | /orcec. | | |---------------------------|-------|--------|----------------|---|------|---------------------|--| | Analyte | Added | Result | Qualifier Unit | D | %Rec | Limits | | | Vinyl chloride | 50.0 | 47.7 | ug/L | | 95 | 62 - 138 | | | Bromomethane | 50.0 | 37.5 | ug/L | | 75 | 50 _ 150 | | | Chloroethane | 50.0 | 48.7 | ug/L | | 97 | 50 - 150 | | | 1,1-Dichloroethene | 50.0 | 48.4 | ug/L | | 97 | 58 - 122 | | | Carbon disulfide | 50.0 | 48.2 | ug/L | | 96 | 50 _ 120 | | | Acetone | 50.0 | 46.2 | ug/L | | 92 | 46 - 153 | | | Methylene Chloride | 50.0 | 48.5 | ug/L | | 97 | 65 _ 125 | | | trans-1,2-Dichloroethene | 50.0 | 48.6 | ug/L | | 97 | 70 - 124 | | | 1,1-Dichloroethane | 50.0 | 48.4 | ug/L | | 97 | 68 - 121 | | | cis-1,2-Dichloroethene | 50.0 | 50.3 | ug/L | | 101 | 70 - 120 | | | Methyl Ethyl Ketone | 50.0 | 50.0 | ug/L | | 100 | 54 - 138 | | | Chloroform | 50.0 | 47.0 | ug/L | | 94 | 70 - 120 | | | 1,1,1-Trichloroethane | 50.0 | 47.4 | ug/L | | 95 | 70 - 123 | | | Carbon tetrachloride | 50.0 | 50.8 | ug/L | | 102 | 70 - 125 | | | 1,2-Dichloroethane | 50.0 | 47.7 | ug/L | | 95 | 69 - 120 | | | Trichloroethene | 50.0 | 50.5 | ug/L | | 101 | 70 - 120 | | | 1,2-Dichloropropane | 50.0 | 50.7 | ug/L | | 101 | 70 - 120 | | | Bromodichloromethane | 50.0 | 51.3 | ug/L | | 103 | 70 - 120 | | | cis-1,3-Dichloropropene | 50.0 | 53.9 | ug/L | | 108 | 70 - 120 | | | methyl isobutyl ketone | 50.0 | 51.8 | ug/L | | 104 | 59 ₋ 135 | | | Toluene | 50.0 | 52.3 | ug/L | | 105 | 70 - 120 | | | trans-1,3-Dichloropropene | 50.0 | 52.4 | ug/L | | 105 | 70 - 120 | | | 1,1,2-Trichloroethane | 50.0 | 50.8 | ug/L | | 102 | 69 - 120 | | | Tetrachloroethene | 50.0 | 47.4 | ug/L | | 95 | 70 - 123 | | | 2-Hexanone | 50.0 | 43.7 | ug/L | | 87 | 55 - 144 | | | Dibromochloromethane | 50.0 | 50.1 | ug/L | | 100 | 70 - 120 | | | Chlorobenzene | 50.0 | 49.1 | ug/L | | 98 | 70 - 120 | | | Ethylbenzene | 50.0 | 51.2 | ug/L | | 102 | 75 ₋ 120 | | | Styrene | 50.0 | 53.1 | ug/L | | 106 | 75 ₋ 120 | | | Bromoform | 50.0 | 49.0 | ug/L | | 98 | 70 _ 125 | | | 1,1,2,2-Tetrachloroethane | 50.0 | 48.4 | ug/L | | 97 | 70 - 128 | | | Xylenes, Total | 100 | 102 | ug/L | | 102 | 70 - 120 | | LCS LCS | Surrogate | %Recovery | Qualifier | Limits | |------------------------------|-----------|-----------|----------| | 1,2-Dichloroethane-d4 (Surr) | 100 | | 75 - 125 | | Toluene-d8 (Surr) | 106 | | 75 - 120 | | 4-Bromofluorobenzene (Surr) | 105 | | 75 - 120 | | Dibromofluoromethane | 100 | | 75 - 120 | Lab Sample ID: 500-68720-4 MS **Matrix: Water** Analysis Batch: 216908 Client Sample ID: IPC GW MW6 Prep Type: Total/NA | • | Sample | Sample | Spike | MS | MS | | | | %Rec. | | |----------------|--------|-----------|-------|--------|-----------|------|---|------|----------|--| | Analyte | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits | | | Benzene | <5.0 | | 50.0 | 51.5 | | ug/L | | 103 | 70 - 120 | | | Chloromethane | <5.0 | | 50.0 | 47.7 | | ug/L | | 95 | 50 - 134 | | | Vinyl chloride | 11 | | 50.0 | 60.1 | | ug/L | | 98 | 62 - 138 | | | Bromomethane | <5.0 | | 50.0 | 40.9 | | ug/L | | 82 | 50 - 150 | | TestAmerica Chicago Page 23 of 33 Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site ## Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued) Lab Sample ID: 500-68720-4 MS **Matrix: Water** Analysis Batch: 216908 Client Sample ID: IPC GW MW6 Prep Type: Total/NA | | Sample | Sample | Spike | MS | MS | | | | %Rec. | | |---------------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|--| | Analyte | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits | | | Chloroethane | <5.0 | | 50.0 | 54.7 | | ug/L | | 109 | 50 - 150 | | | 1,1-Dichloroethene | 10 | | 50.0 | 58.5 | | ug/L | | 97 | 58 - 122 | | | Carbon disulfide | <5.0 | | 50.0 | 48.5 | | ug/L | | 97 | 50 _ 120 | | | Acetone | <20 | | 50.0 | 43.1 | | ug/L | | 86 | 46 - 153 | | | Methylene Chloride | <10 | | 50.0 | 49.9 | | ug/L | | 100 | 65 - 125 | | | trans-1,2-Dichloroethene | <5.0 | | 50.0 | 51.0 | | ug/L | | 100 | 70 - 124 | | | 1,1-Dichloroethane | 7.2 | | 50.0 | 57.4 | | ug/L | | 100 | 68 - 121 | | | cis-1,2-Dichloroethene | 64 | | 50.0 | 112 | | ug/L | | 97 | 70 - 120 | | | Methyl Ethyl Ketone | <20 | | 50.0 | 48.7 | | ug/L | | 97 | 54 - 138 | | | Chloroform | <5.0 | | 50.0 | 50.5 | | ug/L | | 101 | 70 - 120 | | | 1,1,1-Trichloroethane | 12 | | 50.0 | 62.8 | | ug/L | | 102 | 70 _ 123 | | | Carbon tetrachloride | <5.0 | | 50.0 | 55.4 | | ug/L | | 111 | 70 - 125 | | | 1,2-Dichloroethane | <5.0 | | 50.0 | 49.8 | | ug/L | | 100 | 69 _ 120 | | | Trichloroethene | 81 | | 50.0 | 132 | | ug/L | | 101 | 70 - 120 | | | 1,2-Dichloropropane | <5.0 | | 50.0 | 52.8 | | ug/L | | 106 | 70 _ 120 | | | Bromodichloromethane | <5.0 | | 50.0 | 53.8 | | ug/L | | 108 | 70 - 120 | | | cis-1,3-Dichloropropene | <5.0 | | 50.0 | 52.7 | | ug/L | | 105 | 70 _ 120 | | | methyl isobutyl ketone | <20 | | 50.0 | 50.5 | | ug/L | | 101 | 59 _ 135 | | | Toluene | <5.0 | | 50.0 | 54.6 | | ug/L | | 109 | 70 - 120 | | | trans-1,3-Dichloropropene | <5.0 | | 50.0 | 53.1 | | ug/L | | 106 | 70 _ 120 | | | 1,1,2-Trichloroethane | <5.0 | | 50.0 | 53.3 | | ug/L | | 107 | 69 - 120 | | | Tetrachloroethene | 28 | | 50.0 | 79.7 | | ug/L | | 103 | 70 _ 123 | | | 2-Hexanone | <20 | | 50.0 | 47.6 | | ug/L | | 95 | 55 - 144 | | | Dibromochloromethane | <5.0 | | 50.0 | 54.2 | | ug/L | | 108 | 70 _ 120 | | | Chlorobenzene | <5.0 | | 50.0 | 53.2 | | ug/L | | 106 | 70 _ 120 | | | Ethylbenzene | <5.0 | | 50.0 | 55.5 | | ug/L | | 111 | 75 - 120 | | | Styrene | <5.0 | | 50.0 | 56.6 | | ug/L | | 113 | 75 - 120 | | | Bromoform | <5.0 | | 50.0 | 50.9 | | ug/L | | 102 | 70 - 125 | | | 1,1,2,2-Tetrachloroethane | <5.0 | | 50.0 | 50.8 | | ug/L | | 102 | 70 - 128 | | | Xylenes, Total | <5.0 | | 100 | 111 | | ug/L | | 111 | 70 _ 120 | | MS MS | Surrogate | %Recovery | Qualifier | Limits | |------------------------------|-----------|-----------|----------| | 1,2-Dichloroethane-d4 (Surr) | 99 | | 75 - 125 | | Toluene-d8 (Surr) | 106 | | 75 - 120 | | 4-Bromofluorobenzene (Surr) | 105 | | 75 - 120 | | Dibromofluoromethane | 100 | | 75 - 120 | Lab Sample ID: 500-68720-4 MSD **Matrix: Water** Analysis Batch: 216908 | Client Sample ID: IPC GW MW | 6 | |-----------------------------|---| | Prep Type: Total/N | A | | | Sample | Sample | Spike | MSD | MSD | | | | %Rec. | | RPD | |--------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|-----|-------| | Analyte | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits | RPD | Limit | | Benzene | <5.0 | | 50.0 | 50.8 | | ug/L | | 102 | 70 - 120 | 1 | 20 | | Chloromethane | <5.0 | | 50.0 | 47.0 | | ug/L | | 94 | 50 - 134 | 1 | 20 | | Vinyl chloride | 11 | | 50.0 | 60.6 | | ug/L | | 100 | 62 - 138 | 1 | 20 | | Bromomethane | <5.0 | | 50.0 | 42.8 | | ug/L | | 86 | 50 - 150 | 5 | 20 | | Chloroethane | <5.0 | | 50.0 | 55.4 | | ug/L | | 111 | 50 - 150 | 1 | 20 | | 1,1-Dichloroethene | 10 | | 50.0 | 57.0 | | ug/L | | 94 | 58 - 122 | 3 | 20 | TestAmerica Chicago Page 24 of 33 3 6 8 10 46 13 15 Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site **Client Sample ID: IPC GW MW6** Prep Type: Total/NA ## Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued) Lab Sample ID: 500-68720-4 MSD **Matrix: Water** **Analysis Batch: 216908** |
Sar | | Sample | Spike | MSD | MSD | | | | %Rec. | | RPD | |---------------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|-----|-------| | Analyte | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits | RPD | Limit | | Carbon disulfide | <5.0 | | 50.0 | 47.3 | | ug/L | | 95 | 50 - 120 | 3 | 20 | | Acetone | <20 | | 50.0 | 43.4 | | ug/L | | 87 | 46 - 153 | 1 | 20 | | Methylene Chloride | <10 | | 50.0 | 48.2 | | ug/L | | 96 | 65 - 125 | 3 | 20 | | trans-1,2-Dichloroethene | <5.0 | | 50.0 | 49.4 | | ug/L | | 97 | 70 - 124 | 3 | 20 | | 1,1-Dichloroethane | 7.2 | | 50.0 | 56.4 | | ug/L | | 98 | 68 - 121 | 2 | 20 | | cis-1,2-Dichloroethene | 64 | | 50.0 | 113 | | ug/L | | 98 | 70 - 120 | 1 | 20 | | Methyl Ethyl Ketone | <20 | | 50.0 | 46.9 | | ug/L | | 94 | 54 - 138 | 4 | 20 | | Chloroform | <5.0 | | 50.0 | 48.5 | | ug/L | | 97 | 70 - 120 | 4 | 20 | | 1,1,1-Trichloroethane | 12 | | 50.0 | 62.0 | | ug/L | | 100 | 70 - 123 | 1 | 20 | | Carbon tetrachloride | <5.0 | | 50.0 | 53.0 | | ug/L | | 106 | 70 - 125 | 4 | 20 | | 1,2-Dichloroethane | <5.0 | | 50.0 | 47.9 | | ug/L | | 96 | 69 - 120 | 4 | 20 | | Trichloroethene | 81 | | 50.0 | 133 | | ug/L | | 103 | 70 - 120 | 1 | 20 | | 1,2-Dichloropropane | <5.0 | | 50.0 | 51.0 | | ug/L | | 102 | 70 - 120 | 3 | 20 | | Bromodichloromethane | <5.0 | | 50.0 | 51.4 | | ug/L | | 103 | 70 - 120 | 5 | 20 | | cis-1,3-Dichloropropene | <5.0 | | 50.0 | 50.8 | | ug/L | | 102 | 70 - 120 | 4 | 20 | | methyl isobutyl ketone | <20 | | 50.0 | 48.6 | | ug/L | | 97 | 59 - 135 | 4 | 20 | | Toluene | <5.0 | | 50.0 | 52.6 | | ug/L | | 105 | 70 - 120 | 4 | 20 | | trans-1,3-Dichloropropene | <5.0 | | 50.0 | 50.7 | | ug/L | | 101 | 70 - 120 | 5 | 20 | | 1,1,2-Trichloroethane | <5.0 | | 50.0 | 51.0 | | ug/L | | 102 | 69 - 120 | 4 | 20 | | Tetrachloroethene | 28 | | 50.0 | 77.4 | | ug/L | | 99 | 70 - 123 | 3 | 20 | | 2-Hexanone | <20 | | 50.0 | 42.9 | | ug/L | | 86 | 55 - 144 | 10 | 20 | | Dibromochloromethane | <5.0 | | 50.0 | 51.0 | | ug/L | | 102 | 70 - 120 | 6 | 20 | | Chlorobenzene | <5.0 | | 50.0 | 50.9 | | ug/L | | 102 | 70 - 120 | 4 | 20 | | Ethylbenzene | <5.0 | | 50.0 | 53.5 | | ug/L | | 107 | 75 - 120 | 4 | 20 | | Styrene | <5.0 | | 50.0 | 54.0 | | ug/L | | 108 | 75 - 120 | 5 | 20 | | Bromoform | <5.0 | | 50.0 | 48.9 | | ug/L | | 98 | 70 - 125 | 4 | 20 | | 1,1,2,2-Tetrachloroethane | <5.0 | | 50.0 | 48.4 | | ug/L | | 97 | 70 - 128 | 5 | 20 | | Xylenes, Total | <5.0 | | 100 | 106 | | ug/L | | 106 | 70 - 120 | 5 | 20 | | | MSD | MSD | | |------------------------------|-----------|-----------|----------| | Surrogate | %Recovery | Qualifier | Limits | | 1,2-Dichloroethane-d4 (Surr) | 98 | | 75 - 125 | | Toluene-d8 (Surr) | 106 | | 75 - 120 | 75 - 120 4-Bromofluorobenzene (Surr) 106 Dibromofluoromethane 100 75 - 120 Lab Sample ID: MB 500-216976/6 **Matrix: Water** Analysis Batch: 216976 | Client Sample ID: Method Blank | |--------------------------------| | Prep Type: Total/NA | | | IVID | IVID | | | | | | | | |---|--------|-----------|-----|-------|------|---|----------|----------------|---------| | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | | Benzene | <5.0 | | 5.0 | 0.074 | ug/L | | | 12/19/13 22:32 | 1 | | Chloromethane | <5.0 | | 5.0 | 0.18 | ug/L | | | 12/19/13 22:32 | 1 | | Vinyl chloride | <2.0 | | 2.0 | 0.10 | ug/L | | | 12/19/13 22:32 | 1 | | Bromomethane | <5.0 | | 5.0 | 0.31 | ug/L | | | 12/19/13 22:32 | 1 | | Chloroethane | <5.0 | | 5.0 | 0.34 | ug/L | | | 12/19/13 22:32 | 1 | | 1,1-Dichloroethene | <5.0 | | 5.0 | 0.31 | ug/L | | | 12/19/13 22:32 | 1 | | Carbon disulfide | <5.0 | | 5.0 | 0.43 | ug/L | | | 12/19/13 22:32 | 1 | | Acetone | <20 | | 20 | 1.3 | ug/L | | | 12/19/13 22:32 | 1 | | l e e e e e e e e e e e e e e e e e e e | | | | | | | | | | TestAmerica Chicago Page 25 of 33 12/20/2013 Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued) MB MB Lab Sample ID: MB 500-216976/6 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 216976** | | IVID | INID | | | | | | | Dil Fac | |---------------------------|--------|-----------|-----|-------|------|---|----------|----------------|---------| | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | | | Methylene Chloride | <10 | | 10 | 0.68 | ug/L | | | 12/19/13 22:32 | 1 | | trans-1,2-Dichloroethene | <5.0 | | 5.0 | 0.25 | ug/L | | | 12/19/13 22:32 | 1 | | 1,1-Dichloroethane | <5.0 | | 5.0 | 0.19 | ug/L | | | 12/19/13 22:32 | 1 | | cis-1,2-Dichloroethene | <5.0 | | 5.0 | 0.12 | ug/L | | | 12/19/13 22:32 | 1 | | Methyl Ethyl Ketone | <20 | | 20 | 1.5 | ug/L | | | 12/19/13 22:32 | 1 | | Chloroform | <5.0 | | 5.0 | 0.20 | ug/L | | | 12/19/13 22:32 | 1 | | 1,1,1-Trichloroethane | <5.0 | | 5.0 | 0.20 | ug/L | | | 12/19/13 22:32 | 1 | | Carbon tetrachloride | <5.0 | | 5.0 | 0.26 | ug/L | | | 12/19/13 22:32 | 1 | | 1,2-Dichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/19/13 22:32 | 1 | | Trichloroethene | <5.0 | | 5.0 | 0.19 | ug/L | | | 12/19/13 22:32 | 1 | | 1,2-Dichloropropane | <5.0 | | 5.0 | 0.20 | ug/L | | | 12/19/13 22:32 | 1 | | Bromodichloromethane | <5.0 | | 5.0 | 0.17 | ug/L | | | 12/19/13 22:32 | 1 | | cis-1,3-Dichloropropene | <5.0 | | 5.0 | 0.18 | ug/L | | | 12/19/13 22:32 | 1 | | methyl isobutyl ketone | <20 | | 20 | 0.33 | ug/L | | | 12/19/13 22:32 | 1 | | Toluene | <5.0 | | 5.0 | 0.11 | ug/L | | | 12/19/13 22:32 | 1 | | trans-1,3-Dichloropropene | <5.0 | | 5.0 | 0.21 | ug/L | | | 12/19/13 22:32 | 1 | | 1,1,2-Trichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/19/13 22:32 | 1 | | Tetrachloroethene | <5.0 | | 5.0 | 0.17 | ug/L | | | 12/19/13 22:32 | 1 | | 2-Hexanone | <20 | | 20 | 0.56 | ug/L | | | 12/19/13 22:32 | 1 | | Dibromochloromethane | <5.0 | | 5.0 | 0.32 | ug/L | | | 12/19/13 22:32 | 1 | | Chlorobenzene | <5.0 | | 5.0 | 0.14 | ug/L | | | 12/19/13 22:32 | 1 | | Ethylbenzene | <5.0 | | 5.0 | 0.13 | ug/L | | | 12/19/13 22:32 | 1 | | Styrene | <5.0 | | 5.0 | 0.10 | ug/L | | | 12/19/13 22:32 | 1 | | Bromoform | <5.0 | | 5.0 | 0.28 | ug/L | | | 12/19/13 22:32 | 1 | | 1,1,2,2-Tetrachloroethane | <5.0 | | 5.0 | 0.23 | ug/L | | | 12/19/13 22:32 | 1 | | Xylenes, Total | <5.0 | | 5.0 | 0.068 | ug/L | | | 12/19/13 22:32 | 1 | | | | | | | | | | | | | | MB | MB | | | | | |------------------------------|-----------|-----------|----------|----------|----------------|---------| | Surrogate | %Recovery | Qualifier | Limits | Prepared | Analyzed | Dil Fac | | 1,2-Dichloroethane-d4 (Surr) | 103 | | 75 - 125 | | 12/19/13 22:32 | 1 | | Toluene-d8 (Surr) | 108 | | 75 - 120 | | 12/19/13 22:32 | 1 | | 4-Bromofluorobenzene (Surr) | 98 | | 75 - 120 | | 12/19/13 22:32 | 1 | | Dibromofluoromethane | 103 | | 75 - 120 | | 12/19/13 22:32 | 1 | Lab Sample ID: LCS 500-216976/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 216976** | Alialysis Datoli. 210370 | | | | | | | | |--------------------------|-------|--------|-----------|------|---|------|----------| | | Spike | LCS | LCS | | | | %Rec. | | Analyte | Added | Result | Qualifier | Unit | D | %Rec | Limits | | Benzene | 50.0 | 51.1 | | ug/L | | 102 | 70 - 120 | | Chloromethane | 50.0 | 49.4 | | ug/L | | 99 | 50 - 134 | | Vinyl chloride | 50.0 | 50.9 | | ug/L | | 102 | 62 - 138 | | Bromomethane | 50.0 | 44.4 | | ug/L | | 89 | 50 - 150 | | Chloroethane | 50.0 | 56.1 | | ug/L | | 112 | 50 - 150 | | 1,1-Dichloroethene | 50.0 | 48.3 | | ug/L | | 97 | 58 - 122 | | Carbon disulfide | 50.0 | 47.4 | | ug/L | | 95 | 50 - 120 | | Acetone | 50.0 | 45.2 | | ug/L | | 90 | 46 - 153 | | Methylene Chloride | 50.0 | 48.9 | | ug/L | | 98 | 65 - 125 | | trans-1,2-Dichloroethene | 50.0 | 50.1 | | ug/L | | 100 | 70 - 124 | | | | | | | | | | TestAmerica Chicago Page 26 of 33 12/20/2013 ## **QC Sample Results** Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-68720-1 q Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued) Lab Sample ID: LCS 500-216976/4 **Matrix: Water** Analysis Batch: 216976 Client Sample ID: Lab Control Sample Prep Type: Total/NA | | Spike | LCS | LCS | | | | %Rec. | |---------------------------|-------|--------|-----------|------|---|------|---------------------| | Analyte | Added | Result | Qualifier | Unit | D | %Rec | Limits | | 1,1-Dichloroethane | 50.0 | 50.4 | | ug/L | | 101 | 68 - 121 | | cis-1,2-Dichloroethene | 50.0 | 50.5 | | ug/L | | 101 | 70 - 120 | | Methyl Ethyl Ketone | 50.0 | 52.7 | | ug/L | | 105 | 54 - 138 | | Chloroform | 50.0 | 49.2 | | ug/L | | 98 | 70 - 120 | | 1,1,1-Trichloroethane | 50.0 | 50.6 | | ug/L | | 101 | 70 - 123 | | Carbon tetrachloride | 50.0 | 53.1 | | ug/L | | 106 | 70 - 125 | | 1,2-Dichloroethane | 50.0 | 47.4 | | ug/L | | 95 | 69 - 120 | | Trichloroethene | 50.0 | 53.0 | | ug/L | | 106 | 70 - 120 | | 1,2-Dichloropropane | 50.0 | 52.3 | | ug/L | | 105 | 70 - 120 | | Bromodichloromethane | 50.0 | 52.9 | | ug/L | | 106 | 70 - 120 | | cis-1,3-Dichloropropene | 50.0 | 54.0 | | ug/L | | 108 | 70 - 120 | | methyl isobutyl ketone | 50.0 | 52.0 | | ug/L | | 104 | 59 - 135 | | Toluene | 50.0 | 53.9 | | ug/L | | 108 | 70 - 120 | | trans-1,3-Dichloropropene | 50.0 | 53.3 | | ug/L | | 107 | 70 - 120 | | 1,1,2-Trichloroethane | 50.0 | 52.1 | | ug/L | | 104 | 69 - 120 | | Tetrachloroethene | 50.0 | 50.7 | | ug/L | | 101 | 70 - 123 | | 2-Hexanone | 50.0 | 49.7 | | ug/L | | 99 | 55 ₋ 144 | | Dibromochloromethane | 50.0 | 53.7 | | ug/L | | 107 | 70 - 120 | | Chlorobenzene | 50.0 | 52.4 | | ug/L | | 105 | 70 - 120 | | Ethylbenzene | 50.0 | 54.2 | | ug/L | | 108 | 75 _ 120 | | Styrene | 50.0 | 55.6 | | ug/L | | 111 | 75 - 120 | | Bromoform | 50.0 | 50.8 | | ug/L | | 102 | 70 - 125 | | 1,1,2,2-Tetrachloroethane | 50.0 | 50.7 | | ug/L | | 101 | 70
- 128 | | Xylenes, Total | 100 | 109 | | ug/L | | 109 | 70 - 120 | LCS LCS | Surrogate | %Recovery C | ualifier | Limits | |------------------------------|-------------|----------|----------| | 1,2-Dichloroethane-d4 (Surr) | 98 | | 75 - 125 | | Toluene-d8 (Surr) | 107 | | 75 - 120 | | 4-Bromofluorobenzene (Surr) | 102 | | 75 - 120 | | Dibromofluoromethane | 99 | | 75 - 120 | TestAmerica Chicago Client Sample ID: IPC GW MW8 Date Collected: 12/16/13 10:10 Total/NA Lab Sample ID: 500-68720-1 Matrix: Water Date Received: 12/17/13 10:30 Batch Dilution Batch Batch Prepared Factor **Prep Type** Type Method Run Number or Analyzed Analyst Lab TAL CHI Client Sample ID: IPC GW MW9 Analysis 8260B Lab Sample ID: 500-68720-2 Date Collected: 12/16/13 10:28 216908 12/19/13 16:37 BDA **Matrix: Water** Date Received: 12/17/13 10:30 Batch Batch Dilution Batch Prepared Method Run Factor **Prep Type** Type Number or Analyzed Analyst Lab Total/NA 8260B 216908 12/19/13 17:01 BDA TAL CHI Analysis Client Sample ID: IPC GW MW7 Lab Sample ID: 500-68720-3 Date Collected: 12/16/13 11:00 Matrix: Water Date Received: 12/17/13 10:30 Batch Batch Dilution Batch Prepared Prep Type Method Run Factor Number or Analyzed Analyst Type 216908 Total/NA Analysis 8260B 12/19/13 17:26 BDA TAL CHI Lab Sample ID: 500-68720-4 Client Sample ID: IPC GW MW6 Date Collected: 12/16/13 12:37 **Matrix: Water** Date Received: 12/17/13 10:30 Batch Batch Dilution Batch Prepared Method Prep Type Туре Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260B 216908 12/19/13 17:51 BDA TAL CHI Client Sample ID: IPC GW MW5 Lab Sample ID: 500-68720-5 **Matrix: Water** Date Collected: 12/16/13 13:23 Date Received: 12/17/13 10:30 Batch Dilution Batch Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Analysis 8260B 216908 TAL CHI Total/NA 12/19/13 18:16 BDA Client Sample ID: IPC GW MW4 Lab Sample ID: 500-68720-6 Date Collected: 12/16/13 13:57 Matrix: Water Date Received: 12/17/13 10:30 Batch Batch Dilution Batch Prepared Method **Prep Type** Type Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260B 216908 12/19/13 18:40 BDA TAL CHI Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site Lab Sample ID: 500-68720-7 **Matrix: Water** Date Collected: 12/16/13 14:30 Date Received: 12/17/13 10:30 Client Sample ID: IPC GW MW3 | | Batch | Batch | | Dilution | Batch | Prepared | | | |-----------|----------|--------|-----|----------|--------|----------------|---------|---------| | Prep Type | Type | Method | Run | Factor | Number | or Analyzed | Analyst | Lab | | Total/NA | Analysis | 8260B | | 1 | 216976 | 12/19/13 22:57 | BDA | TAL CHI | Client Sample ID: IPC GW MW2 Lab Sample ID: 500-68720-8 Date Collected: 12/16/13 15:00 Matrix: Water Date Received: 12/17/13 10:30 Batch Batch Dilution Batch Prepared Method Factor Number Prep Type Туре Run or Analyzed Analyst Lab Total/NA Analysis 8260B 216976 12/19/13 23:46 BDA TAL CHI Lab Sample ID: 500-68720-9 Client Sample ID: IPC GW MW1 Date Collected: 12/16/13 15:26 Matrix: Water Date Received: 12/17/13 10:30 Dilution Batch Batch Prepared Batch Method Factor Number or Analyzed Prep Type Туре Run Analyst Lab Total/NA Analysis 8260B 216976 12/20/13 00:36 BDA TAL CHI Client Sample ID: F.B. Lab Sample ID: 500-68720-10 Date Collected: 12/16/13 15:45 **Matrix: Water** Date Received: 12/17/13 10:30 Dilution Batch Batch Batch Prepared Number Analyst **Prep Type** Type Method Run Factor or Analyzed Lab Total/NA Analysis 8260B 216976 12/20/13 01:00 BDA TAL CHI Client Sample ID: Trip Blank Lab Sample ID: 500-68720-11 Date Collected: 12/16/13 00:00 Matrix: Water Date Received: 12/17/13 10:30 Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab 8260B 216908 12/19/13 19:05 TAL CHI Total/NA Analysis BDA **Laboratory References:** TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200 ## **Certification Summary** Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-68720-1 #### **Laboratory: TestAmerica Chicago** All certifications held by this laboratory are listed. Not all certifications are applicable to this report. | Authority | Program | EPA Region | Certification ID | Expiration Date | | |---------------------|---------------|------------|------------------|-----------------|--| | Alabama | State Program | 4 | 40461 | 04-30-14 | | | California | NELAP | 9 | 01132CA | 04-30-14 | | | Georgia | State Program | 4 | N/A | 04-30-14 | | | Hawaii | State Program | 9 | N/A | 04-30-14 | | | Illinois | NELAP | 5 | 100201 | 04-30-14 | | | Indiana | State Program | 5 | C-IL-02 | 04-30-14 | | | lowa | State Program | 7 | 82 | 05-01-14 | | | Kansas | NELAP | 7 | E-10161 | 10-31-14 | | | Kentucky | State Program | 4 | 90023 | 12-31-13 | | | Kentucky (UST) | State Program | 4 | 66 | 04-30-14 | | | Louisiana | NELAP | 6 | 30720 | 06-30-14 | | | Massachusetts | State Program | 1 | M-IL035 | 06-30-14 | | | Mississippi | State Program | 4 | N/A | 04-30-14 | | | North Carolina DENR | State Program | 4 | 291 | 12-31-13 * | | | North Dakota | State Program | 8 | R-194 | 04-30-14 | | | Oklahoma | State Program | 6 | 8908 | 08-31-14 | | | South Carolina | State Program | 4 | 77001 | 04-30-14 | | | Texas | NELAP | 6 | T104704252-09-TX | 02-28-14 | | | USDA | Federal | | P330-12-00038 | 02-06-15 | | | Wisconsin | State Program | 5 | 999580010 | 08-31-14 | | | Wyoming | State Program | 8 | 8TMS-Q | 04-30-14 | | ^{*} Expired certification is currently pending renewal and is considered valid. # **TestAmerica** THE LEADER IN ENVIRONMENTA' OL - OII A – Air O ~ Other 2417 Bond Street, University Park, IL (Phone: 708.534.5200 Fax: 708.5 | (optional) | (optional) | | | | | | | | | | |------------|----------------|--|--|--|--|--|--|--|--|--| | Report To | Bill To | | | | | | | | | | | Contact: | Contact: | | | | | | | | | | | Company: | Company: | | | | | | | | | | | Address: | Address: | | | | | | | | | | | Address: | Address: | | | | | | | | | | | Phone: | Phone: | | | | | | | | | | | Fax: | Fax: | | | | | | | | | | | E-Mail: | PO#/Reference# | | | | | | | | | | | | 1 1 1 1 | | | | | | | | | | | Chain | of | Custody | Record | |-------|----|---------|--------| | | | | | | Lab Job #: <u>500 -68720</u> | |------------------------------| | Chain of Custody Number: | | | 20.5 | Pho | one: | | | | | Phone: | | | | | Page of | | | |---|---------------------|-------------|----------------|--------------------|----------|-------------|------|--------------|----------|------------|--------|------------|--------------------|---------------|--| | | | Fax | | | | | | Fax: | | | | | | | 38 | | | 500-68720 COC | E-N | 1ail: | | | | | PO#/Refere | nce# | | | | ıen | nperature °C | of Cooler: | | Client | Olletti 110jeot # | | | Preserv | ative | | | | | : | | | | | Preservative Key 1. HCL, Cool to 4° | | Project Name IP C | | | | Param | eter | | , | | | | | | | | 2. H2SO4, Cool to 4° 3. HNO3, Cool to 4° 4. NaOH, Cool to 4° | | Project Location/State December 1 | Lab Project # | 012 | 25 | | | | | | | | | | | | 5. NaOH/Zn, Cool to 4°
6. NaHSO4
7. Cool to 4° | | Sample BOAN MONO | Den Lab PM | | | | | | | | <u> </u> | | | | | | 8. None
9. Other | | QI qan Sample ID | _ | Sa
Date | mpling
Time | # of
Containers | Matrix | | | | | | | | | | Comments | | 1 PPC GUMI | N 8 | 12-161 | 3 1010 | | W | | | | | | | | | | Commone | | 2 I THE GW MU | 19 | | 1028 | | | | | | | | | | | | | | 3 IPCGWM | W7 | \perp | 1100 | 1 | \perp | | | | | | | | | | | | 4X trc GWM | .w6 | | 1237 | 9 | | | | | | | | | | | | | 5 IPCGW MI | | | 1323 | | | | | | | | | | | | ! | | 6 IPCGW MW
7 IPCGW MW | | | 1357 | | | | | | | | | | | | | | 7 IPCaw Mu | | | 1430 | | | | · | | | | | | | | | | 8 IPCGW MU | | | 1500 | | | | | | | | | | | | | | 9 PRGWMW | 1 | | 1526 | | | | | | | | ļ | | | | | | 10 F.B. | | $-\Psi$ | 1545 | | <u> </u> | | | | | | | | | | | | Julnaround Time Required (Business Days) | | | | Sample | e Dispo | osal | | | | | | | | | Added by TA | | Requested Due Date | _ 7 Days 10 Days 15 | | | | Return | n to Client | Dis | posal by Lab | Arch | ive for | Months | (A fee may | be assessed if sar | mples are ret | ained longer than 1 month) | | Relinguished By Cabe | | ate
6-13 | 16 | Time
ZD | | Received By | with | rotto | H-Ui | # | 12/17/ | /3 | 1030 | | Lab Courier | | Relinquished By Con | mpany Da | ate | | Time | | Received By | | (| ompany | | Date | • | Time | | Shipped Fed | | Relinquished By Col | mpany Da | ate | | Time | | Received By | | (| Company | | Date | | Time | н | and Delivered | | Matrix Key WW - Wastewater SE - Sedim W - Water SO - Soil E - Leachat SL - Sludge WI - Wipe MS - Miscellaneous DW - Drink DW - Drink Subscription DW - Drink | te | ents | | | | | | | | Lab Commen | ts: | | | | | ## **Login Sample Receipt Checklist** Client: Environmental Information Logistics (EIL Job Number: 500-68720-1 Login Number: 68720 List Source: TestAmerica Chicago List Number: 1 Creator: Scott, Sherri L | Creator: Scott, Sherri L | | |
--|--------|---------| | Question | Answer | Comment | | Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td> | True | | | The cooler's custody seal, if present, is intact. | True | | | Sample custody seals, if present, are intact. | True | | | The cooler or samples do not appear to have been compromised or tampered with. | True | | | Samples were received on ice. | True | | | Cooler Temperature is acceptable. | True | | | Cooler Temperature is recorded. | True | 3.8 | | COC is present. | True | | | COC is filled out in ink and legible. | True | | | COC is filled out with all pertinent information. | True | | | Is the Field Sampler's name present on COC? | True | | | There are no discrepancies between the containers received and the COC. | False | | | Samples are received within Holding Time. | True | | | Sample containers have legible labels. | True | | | Containers are not broken or leaking. | False | | | Sample collection date/times are provided. | True | | | Appropriate sample containers are used. | True | | | Sample bottles are completely filled. | True | | | Sample Preservation Verified. | True | | | There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True | | | Containers requiring zero headspace have no headspace or bubble is <6mm (1/4"). | True | | | Multiphasic samples are not present. | True | | True N/A 2 4 _____ 1 9 11 10 14 Samples do not require splitting or compositing. Residual Chlorine Checked. 2 3 5 6 8 10 4 4 12 14 THE LEADER IN ENVIRONMENTAL TESTING # ANALYTICAL REPORT TestAmerica Laboratories, Inc. TestAmerica Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200 TestAmerica Job ID: 500-69823-1 Client Project/Site: Interstate Pollution Control Site For: Environmental Information Logistics (EIL 405 Ritsher Street Beloit, Wisconsin 53511 Attn: Ms. Mary Pearson Rill KhyM Authorized for release by: 1/14/2014 10:09:26 AM Richard Wright, Senior Project Manager (708)534-5200 richard.wright@testamericainc.com ····· Links ····· Review your project results through Total Access **Have a Question?** Visit us at: www.testamericainc.com The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page. This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature. Results relate only to the items tested and the sample(s) as received by the laboratory. # **Table of Contents** | Cover Page | 1 | |-----------------------|----| | Table of Contents | 2 | | Case Narrative | 3 | | Detection Summary | 4 | | Method Summary | 5 | | Sample Summary | 6 | | Client Sample Results | 7 | | Definitions | 11 | | QC Association | 12 | | Surrogate Summary | 13 | | QC Sample Results | 14 | | Chronicle | 15 | | Certification Summary | 16 | | Chain of Custody | 17 | | Receipt Checklists | 18 | 3 4 6 8 9 11 12 14 #### **Case Narrative** Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-69823-1 Job ID: 500-69823-1 **Laboratory: TestAmerica Chicago** Narrative Job Narrative 500-69823-1 #### Comments No additional comments. The samples were received on 1/10/2014 10:45 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.2° C. #### GC/MS VOA No analytical or quality issues were noted. ## **Detection Summary** Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site **Client Sample ID: IPC GW MW8** TestAmerica Job ID: 500-69823-1 | Lab Sample ID: 500-69823-1 | | |----------------------------|--| | _ | | | Analyte | Result Qualifier | RL | MDL Unit | Dil Fac D | Method | Prep Type | |--------------------|------------------|-----|-----------|-----------|--------|-----------| | 1,1-Dichloroethane | 10 | 1.0 | 0.19 ug/L | | 8260B | Total/NA | Client Sample ID: IPC GW DUP Lab Sample ID: 500-69823-2 | Analyte | Result Qualifier | RL | MDL Unit | Dil Fac D | Method | Prep Type | |--------------------|------------------|-----|-----------|-----------|--------|-----------| | 1,1-Dichloroethane | 11 | 1.0 | 0.19 ug/L | | 8260B | Total/NA | **Client Sample ID: IPC FB** Lab Sample ID: 500-69823-3 No Detections. Client Sample ID: Trip Blank Lab Sample ID: 500-69823-4 No Detections. This Detection Summary does not include radiochemical test results. ## **Method Summary** Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-69823-1 | Method | Method Description | Protocol | Laboratory | |--------|------------------------------------|----------|------------| | 8260B | Volatile Organic Compounds (GC/MS) | SW846 | TAL CHI | #### **Protocol References:** SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. #### Laboratory References: TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200 2 3 4 5 - 8 10 111 13 14 ## **Sample Summary** Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-69823-1 | Lab Sample ID | Client Sample ID | Matrix | Collected | Received | |---------------|------------------|--------|----------------|----------------| | 500-69823-1 | IPC GW MW8 | Water | 01/09/14 12:03 | 01/10/14 10:45 | | 500-69823-2 | IPC GW DUP | Water | 01/09/14 12:08 | 01/10/14 10:45 | | 500-69823-3 | IPC FB | Water | 01/09/14 12:35 | 01/10/14 10:45 | | 500-69823-4 | Trip Blank | Water | 01/09/14 00:00 | 01/10/14 10:45 | 4 C 0 9 11 16 14 Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-69823-1 Lab Sample ID: 500-69823-1 Matrix: Water Date Collected: 01/09/14 12:03 Date Received: 01/10/14 10:45 **Client Sample ID: IPC GW MW8** | Method: 8260B - Volatile Organic Compounds (GC/MS) | | | | | | | | | | |--|-----------|-----------|----------|------|------|---|----------|----------------|---------| | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | | 1,1-Dichloroethane | 10 | | 1.0 | 0.19 | ug/L | | | 01/13/14 10:59 | 1 | | Surrogate | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | 1,2-Dichloroethane-d4 (Surr) | 102 | | 75 - 125 | | | - | | 01/13/14 10:59 | 1 | | Toluene-d8 (Surr) | 109 | | 75 - 120 | | | | | 01/13/14 10:59 | 1 | | 4-Bromofluorobenzene (Surr) | 98 | | 75 - 120 | | | | | 01/13/14 10:59 | 1 | | Dibromofluoromethane | 103 | | 75 - 120 | | | | | 01/13/14 10:59 | 1 | Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-69823-1 Lab Sample ID: 500-69823-2 Matrix: Water **Client Sample ID: IPC GW DUP** Date Collected: 01/09/14 12:08 Date Received: 01/10/14 10:45 | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |------------------------------|-----------|-----------|----------|------|------|---|----------|----------------|---------| | 1,1-Dichloroethane | | | 1.0 | 0.19 | ug/L | | | 01/13/14 11:24 | 1 | | Surrogate | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | 1,2-Dichloroethane-d4 (Surr) | 101 | | 75 - 125 | | | - | | 01/13/14 11:24 | 1 | | Toluene-d8 (Surr) | 110 | | 75 - 120 | | | | | 01/13/14 11:24 | 1 | | 4-Bromofluorobenzene (Surr) | 98 | | 75 - 120 | | | | | 01/13/14 11:24 | 1 | | Dibromofluoromethane | 104 | | 75 - 120 | | | | | 01/13/14 11:24 | 1 | Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-69823-1 Client Sample ID: IPC FB Lab Sample ID: 500-69823-3 Date Collected: 01/09/14 12:35 Matrix: Water Date Received: 01/10/14 10:45 | Method: 8260B - Volatile Orga | Method: 8260B - Volatile Organic Compounds (GC/MS) | | | | | | | | | | |-------------------------------|--|-----------|----------|------|------|---|----------|----------------|---------|--| | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | | | 1,1-Dichloroethane | <1.0 | | 1.0 | 0.19 | ug/L | | | 01/13/14 11:48 | 1 | | | Surrogate | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | | 1,2-Dichloroethane-d4 (Surr) | 101 | | 75 - 125 | | | - | | 01/13/14 11:48 | 1 | | | Toluene-d8 (Surr) | 107 | | 75 - 120 | | | | | 01/13/14 11:48 | 1 | | | 4-Bromofluorobenzene (Surr) | 96 | | 75 - 120 | | | | | 01/13/14 11:48 | 1 | | | Dibromofluoromethane | 101 | | 75 - 120 | | | | | 01/13/14 11:48 | 1 | | 3 6 _____ 9 10 12 4 4 Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-69823-1 Lab Sample ID: 500-69823-4 Matrix: Water | Client Sample ID: Trip Blank | |-------------------------------------| | Date Collected: 01/09/14 00:00 | | Date Received: 01/10/14 10:45 | | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |------------------------------|-----------|-----------|----------|------|------|---|----------|----------------|---------| | 1,1-Dichloroethane | <1.0 | | 1.0 | 0.19 | ug/L | | | 01/13/14 12:13 | 1 | | Surrogate | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | 1,2-Dichloroethane-d4 (Surr) | 101 | | 75 - 125 | | | - |
 01/13/14 12:13 | 1 | | Toluene-d8 (Surr) | 108 | | 75 - 120 | | | | | 01/13/14 12:13 | 1 | | 4-Bromofluorobenzene (Surr) | 97 | | 75 - 120 | | | | | 01/13/14 12:13 | 1 | | Dibromofluoromethane | 102 | | 75 - 120 | | | | | 01/13/14 12:13 | 1 | ## **Definitions/Glossary** Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site Toxicity Equivalent Quotient (Dioxin) TestAmerica Job ID: 500-69823-1 ## **Glossary** TEQ | Abbreviation | These commonly used abbreviations may or may not be present in this report. | |----------------|---| | n | Listed under the "D" column to designate that the result is reported on a dry weight basis | | %R | Percent Recovery | | CNF | Contains no Free Liquid | | DER | Duplicate error ratio (normalized absolute difference) | | Dil Fac | Dilution Factor | | DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample | | DLC | Decision level concentration | | MDA | Minimum detectable activity | | EDL | Estimated Detection Limit | | MDC | Minimum detectable concentration | | MDL | Method Detection Limit | | ML | Minimum Level (Dioxin) | | NC | Not Calculated | | ND | Not detected at the reporting limit (or MDL or EDL if shown) | | PQL | Practical Quantitation Limit | | QC | Quality Control | | RER | Relative error ratio | | RL | Reporting Limit or Requested Limit (Radiochemistry) | | RPD | Relative Percent Difference, a measure of the relative difference between two points | | TEF | Toxicity Equivalent Factor (Dioxin) | 4 5 6 8 9 10 46 12 14 ## **QC Association Summary** Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-69823-1 #### **GC/MS VOA** #### Analysis Batch: 219474 | Lab Sample ID Client Sample ID | | Prep Type | Matrix | Method | Prep Batch | |--------------------------------|--------------------|-----------|--------|--------|------------| | 500-69823-1 | IPC GW MW8 | Total/NA | Water | 8260B | | | 500-69823-2 | IPC GW DUP | Total/NA | Water | 8260B | | | 500-69823-3 | IPC FB | Total/NA | Water | 8260B | | | 500-69823-4 | Trip Blank | Total/NA | Water | 8260B | | | LCS 500-219474/4 | Lab Control Sample | Total/NA | Water | 8260B | | | MB 500-219474/6 | Method Blank | Total/NA | Water | 8260B | | 2 4 5 U 8 9 10 11 13 14 ## **Surrogate Summary** Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-69823-1 #### Method: 8260B - Volatile Organic Compounds (GC/MS) Matrix: Water Prep Type: Total/NA | | | | | Percent Sur | rrogate Rec | |------------------|--------------------|----------|----------|-------------|-------------| | | | 12DCE | TOL | BFB | DBFM | | Lab Sample ID | Client Sample ID | (75-125) | (75-120) | (75-120) | (75-120) | | 500-69823-1 | IPC GW MW8 | 102 | 109 | 98 | 103 | | 500-69823-2 | IPC GW DUP | 101 | 110 | 98 | 104 | | 500-69823-3 | IPC FB | 101 | 107 | 96 | 101 | | 500-69823-4 | Trip Blank | 101 | 108 | 97 | 102 | | LCS 500-219474/4 | Lab Control Sample | 98 | 107 | 103 | 99 | | MB 500-219474/6 | Method Blank | 106 | 108 | 97 | 106 | 12DCE = 1,2-Dichloroethane-d4 (Surr) TOL = Toluene-d8 (Surr) BFB = 4-Bromofluorobenzene (Surr) DBFM = Dibromofluoromethane ## **QC Sample Results** Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site Dibromofluoromethane TestAmerica Job ID: 500-69823-1 ## Method: 8260B - Volatile Organic Compounds (GC/MS) | Lab Sample ID: MB 500-219474/6 | | | | | | | le ID: Method | D: Method Blank | | | |--------------------------------|------------------------|--------|-----------|----|-----|------|---------------|-----------------|---------------|---------| | Matrix: Water | | | | | | | | F | Prep Type: To | tal/NA | | | Analysis Batch: 219474 | | | | | | | | | | | | | MB | MB | | | | | | | | | | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | | 1,1-Dichloroethane | <1.0 | | 1.0 | 0.19 ug/L | _ | 01/13/14 10:10 | 1 | |------------------------------|-----------|-----------|----------|-----------|----------|----------------|---------| | | MB | MB | | | | | | | Surrogate | %Recovery | Qualifier | Limits | | Prepared | Analyzed | Dil Fac | | 1,2-Dichloroethane-d4 (Surr) | 106 | | 75 - 125 | | | 01/13/14 10:10 | 1 | | Toluene-d8 (Surr) | 108 | | 75 - 120 | | | 01/13/14 10:10 | 1 | | 4-Bromofluorobenzene (Surr) | 97 | | 75 - 120 | | | 01/13/14 10:10 | 1 | | Dibromofluoromethane | 106 | | 75 - 120 | | | 01/13/14 10:10 | 1 | | Lab Sample ID: LCS 500-21 | 9474/4 | | | | | | Client | t Sample | e ID: Lab Contr | ol Sample | |------------------------------|-----------|-----------|---------------------|--------|-----------|------|--------|----------|-----------------|------------| | Matrix: Water | | | | | | | | | Prep Type | : Total/NA | | Analysis Batch: 219474 | | | | | | | | | | | | | | | Spike | LCS | LCS | | | | %Rec. | | | Analyte | | | Added | Result | Qualifier | Unit | D | %Rec | Limits | | | 1,1-Dichloroethane | | | 50.0 | 45.0 | | ug/L | | 90 | 68 - 121 | | | | LCS | LCS | | | | | | | | | | Surrogate | %Recovery | Qualifier | Limits | | | | | | | | | 1,2-Dichloroethane-d4 (Surr) | 98 | | 75 - 125 | | | | | | | | | Toluene-d8 (Surr) | 107 | | 75 ₋ 120 | | | | | | | | | 4-Bromofluorobenzene (Surr) | 103 | | 75 - 120 | 75 - 120 #### Lab Chronicle Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-69823-1 -1 Client Sample ID: IPC GW MW8 Date Collected: 01/09/14 12:03 Lab Sample ID: 500-69823-1 **Matrix: Water** Date Received: 01/10/14 10:45 Lab TAL CHI Batch Batch Dilution Batch Prepared Factor Prep Type Type Method Run Number or Analyzed **Analyst** Total/NA Analysis 8260B 219474 01/13/14 10:59 BDA Client Sample ID: IPC GW DUP Lab Sample ID: 500-69823-2 Matrix: Water Date Collected: 01/09/14 12:08 Date Received: 01/10/14 10:45 Batch Batch Dilution Batch Prepared Method Run Factor or Analyzed Prep Type Туре Number Analyst Lab TAL CHI Total/NA 8260B 219474 01/13/14 11:24 BDA Analysis 1(Client Sample ID: IPC FB Lab Sample ID: 500-69823-3 Matrix: Water Date Collected: 01/09/14 12:35 Date Received: 01/10/14 10:45 Matrix. Wat | | Batch | Batch | | Dilution | Batch | Prepared | | | | |-----------|----------|--------|-----|----------|--------|----------------|---------|---------|---| | Prep Type | Type | Method | Run | Factor | Number | or Analyzed | Analyst | Lab | | | Total/NA | Analysis | 8260B | | 1 | 219474 | 01/13/14 11:48 | BDA | TAL CHI | _ | 13 Client Sample ID: Trip Blank Lab Sample ID: 500-69823-4 Matrix: Water Date Collected: 01/09/14 00:00 Date Received: 01/10/14 10:45 | ı | | Batch | Batch | | Dilution | Batch | Prepared | | | |---|-----------|----------|--------|-----|----------|--------|----------------|---------|---------| | | Prep Type | Туре | Method | Run | Factor | Number | or Analyzed | Analyst | Lab | | Į | Total/NA | Analysis | 8260B | | 1 | 219474 | 01/13/14 12:13 | BDA | TAL CHI | #### Laboratory References: TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200 ## **Certification Summary** Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-69823-1 #### **Laboratory: TestAmerica Chicago** All certifications held by this laboratory are listed. Not all certifications are applicable to this report. | Authority | Program | EPA Region | Certification ID | Expiration Date | |---------------------|---------------|------------|------------------|-----------------| | Alabama | State Program | 4 | 40461 | 04-30-14 | | California | NELAP | 9 | 01132CA | 04-30-14 | | Georgia | State Program | 4 | N/A | 04-30-14 | | Hawaii | State Program | 9 | N/A | 04-30-14 | | Illinois | NELAP | 5 | 100201 | 04-30-14 | | Indiana | State Program | 5 | C-IL-02 | 04-30-14 | | lowa | State Program | 7 | 82 | 05-01-14 | | Kansas | NELAP | 7 | E-10161 | 10-31-14 | | Kentucky (UST) | State Program | 4 | 66 | 04-30-14 | | Louisiana | NELAP | 6 | 30720 | 06-30-14 | | Massachusetts | State Program | 1 | M-IL035 | 06-30-14 | | Mississippi | State Program | 4 | N/A | 04-30-14 | | North Carolina DENR | State Program | 4 | 291 | 12-31-14 | | North Dakota | State Program | 8 | R-194 | 04-30-14 | | Oklahoma | State Program | 6 | 8908 | 08-31-14 | | South Carolina | State Program | 4 | 77001 | 04-30-14 | | Texas | NELAP | 6 | T104704252-09-TX | 02-28-14 | | USDA | Federal | | P330-12-00038 | 02-06-15 | | Wisconsin | State Program | 5 | 999580010 | 08-31-14 | | Wyoming | State Program | 8 | 8TMS-Q | 04-30-14 | 3 4 5 7 0 10 11 12 4 / ## <u>TestAmerica</u> #### THE LEADER IN ENVIRONMENTAL Turnaround Time Required (Business Days) 2417 Bond Street, University Park, IL 60 Phone: 708.534.5200 Fax: 708.534 500-69823 COC | /audianan | | |-------------------------|----------------| | (optional)
Report To | (optional) | | Contact: | Contact: | | Company: | Company: | | Address: | Address: | | Address: | Address: | | Phone: | Phone: | | Fax: | Fax: | | E-Mail: | PO#/Reference# | | | | # Chain of Custody Record Lab Job #: 500-69823 Lab Job #: 500 - 69 623 Chain of Custody Number: | ge |
of | | |----|--------|--| | | | | | | | | | E-Mall: | | |
PO#/Referen | nce# |
 |
7 | femperature °C | of Cooler: | |---------|--------|--|-------------------|-----------|------------------------------|----------|-----------------|------|------|-------|----------------|--| | | | PC | Client Project # | | Preservative | | | | | | | Preservative Key
1. HCL, Cool to 4° | | | | IPC | | | Parameter | | | | | | : | 2. H2SO4, Cool to 4°
3.
HNO3, Cool to 4°
4. NaOH, Cool to 4° | | Project | _ooati | pn/States
cockford D/
n'An McQueen | Lab Project # 500 | 01225 | | | | | | | | 5. NaOH/Zn, Cool to 4°
6. NaHSO4
7. Cool to 4° | | Sample | B | Mandren | Lab PM | | | <u> </u> | | | | | | 8. None
9. Other | | Lab ID | MS/MSD | | | Sampling | # of
Containers
Matrix | | | | | | | | | ا ت | Σ_ | Sample ID | | Date Time | #8 ₹ | | | | |
 | | Comments | | | | EPC AWD" | 1-9 | 1-14 | | | | | | | | : | | 1 | • | IPCGW MWG | Š | 1203 | 260 | , | | | | | | | | 2 | | IPC OW DUP | | 1208 | | | | | | | | | | 3 | | PPC FB | | / 1235 | | | | | | | , | | | 4 | | TRIP Blank | | | | | | | | | | added by TA | | | | | | | | | | | | | · |
 |
 | | | | | 1 Day2 Date_ | ays 5 Days 7 Days | 10 Days15 Days | Other Ref | turn to Client | Disposal by Lab Arch | nive for Months (A fe | e may be assessed if samples | are retained longer than | 1 month) | |---|---|-----------------|-----------|----------------|----------------------|-----------------------|------------------------------|--------------------------|----------| | Helinquished By | - Carbenu | 1-9-14 | 1300 · | Received By | Company | Date 101+ | Time 1045 | Lab Courier | | | Relinquished By | Company | Date | Time | Received By | Company | Date | Time | Shipped | | | Relinquished By | Company | Date | Time | Received By | Company | Date | Time | Hand Delivered | | | WW – Wastewater
W – Water
S – Soil
SL – Sludge
MS – Miscellaneous
OL – Oil | Matrix Key SE – Sediment SO – Soil L – Leachate WI – Wipe DW – Drinking Water O – Other | Client Comments | | | | Lab Comments: | | | | Sample Disposal #### **Login Sample Receipt Checklist** Client: Environmental Information Logistics (EIL Job Number: 500-69823-1 Login Number: 69823 List Source: TestAmerica Chicago List Number: 1 Creator: Lunt, Jeff T | Creator: Lunt, Jeff 1 | | | |--|--------|---------| | Question | Answer | Comment | | Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td> | True | | | The cooler's custody seal, if present, is intact. | True | | | Sample custody seals, if present, are intact. | True | | | The cooler or samples do not appear to have been compromised or tampered with. | True | | | Samples were received on ice. | True | 4.2 | | Cooler Temperature is acceptable. | True | | | Cooler Temperature is recorded. | True | | | COC is present. | True | | | COC is filled out in ink and legible. | True | | | COC is filled out with all pertinent information. | True | | | Is the Field Sampler's name present on COC? | True | | | There are no discrepancies between the containers received and the COC. | True | | | Samples are received within Holding Time. | True | | | Sample containers have legible labels. | True | | | Containers are not broken or leaking. | True | | | Sample collection date/times are provided. | True | | | Appropriate sample containers are used. | True | | | Sample bottles are completely filled. | True | | | Sample Preservation Verified. | True | | | There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True | | | Containers requiring zero headspace have no headspace or bubble is <6mm (1/4"). | True | | | Multiphasic samples are not present. | True | | | Samples do not require splitting or compositing. | True | | | Residual Chlorine Checked. | N/A | | | | | | 2 4 5 7 9 11 13 14 THE LEADER IN ENVIRONMENTAL TESTING ## **ANALYTICAL REPORT** TestAmerica Laboratories, Inc. TestAmerica Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200 TestAmerica Job ID: 500-79349-1 Client Project/Site: Interstate Pollution Control Site #### For: Environmental Information Logistics (EIL 405 Ritsher Street Beloit, Wisconsin 53511 Attn: Ms. Mary Pearson Rill khym Authorized for release by: 6/27/2014 2:42:08 PM Richard Wright, Senior Project Manager (708)534-5200 richard.wright@testamericainc.comLINKS Review your project results through Total Access **Have a Question?** Visit us at: www.testamericainc.com The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page. This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature. Results relate only to the items tested and the sample(s) as received by the laboratory. ## **Table of Contents** | Cover Page | 1 | |-----------------------|----| | Table of Contents | 2 | | Case Narrative | 3 | | Detection Summary | 4 | | Method Summary | 6 | | Sample Summary | 7 | | Client Sample Results | 8 | | Definitions | 19 | | QC Association | 20 | | Surrogate Summary | 21 | | QC Sample Results | 22 | | Chronicle | 26 | | Certification Summary | 28 | | Chain of Custody | 29 | | Receipt Checklists | 30 | 3 4 6 _____ 9 11 13 14 #### **Case Narrative** Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-79349-1 Job ID: 500-79349-1 **Laboratory: TestAmerica Chicago** Narrative **Job Narrative** 500-79349-1 #### Comments No additional comments. The samples were received on 6/24/2014 10:10 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.3° C. #### GC/MS VOA No analytical or quality issues were noted, other than those described in the Definitions/Glossary page. Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site Client Sample ID: MW1 TestAmerica Job ID: 500-79349-1 Lab Sample ID: 500-79349-1 | Analyte | Result Qua | alifier RL | MDL | Unit | Dil Fac | D | Method | Prep Type | |------------------------|------------|------------|------|------|---------|---|--------|-----------| | Vinyl chloride | 17 | 2.0 | 0.10 | ug/L | 1 | _ | 8260B | Total/NA | | 1,1-Dichloroethene | 9.7 | 5.0 | 0.31 | ug/L | 1 | | 8260B | Total/NA | | 1,1-Dichloroethane | 14 | 5.0 | 0.19 | ug/L | 1 | | 8260B | Total/NA | | cis-1,2-Dichloroethene | 160 | 5.0 | 0.12 | ug/L | 1 | | 8260B | Total/NA | | Trichloroethene | 16 | 5.0 | 0.19 | ug/L | 1 | | 8260B | Total/NA | **Client Sample ID: MW2** Lab Sample ID: 500-79349-2 | Analyte | Result Qualifier | RL | MDL | Unit | Dil Fac | D Method | Prep Type | |------------------------|------------------|-----|------|------|---------|----------|-----------| | 1,1-Dichloroethene | | 5.0 | 0.31 | ug/L | | 8260B | Total/NA | | cis-1,2-Dichloroethene | 31 | 5.0 | 0.12 | ug/L | 1 | 8260B | Total/NA | | 1,1,1-Trichloroethane | 10 | 5.0 | 0.20 | ug/L | 1 | 8260B | Total/NA | | Trichloroethene | 180 | 5.0 | 0.19 | ug/L | 1 | 8260B | Total/NA | | Tetrachloroethene | 31 | 5.0 | 0.17 | ug/L | 1 | 8260B | Total/NA | Client Sample ID: MW3 Lab Sample ID: 500-79349-3 | Analyte | Result Qualifie | er RL | MDL | Unit | Dil Fac | D | Method | Prep Type | |------------------------|-----------------|-------|------|------|---------|---|--------|-----------| | 1,1-Dichloroethene | | 5.0 | 0.31 | ug/L | 1 | _ | 8260B | Total/NA | | cis-1,2-Dichloroethene | 26 | 5.0 | 0.12 | ug/L | 1 | | 8260B | Total/NA | | 1,1,1-Trichloroethane | 11 | 5.0 | 0.20 | ug/L | 1 | | 8260B | Total/NA | | Trichloroethene | 200 | 5.0 | 0.19 | ug/L | 1 | | 8260B | Total/NA | | Tetrachloroethene | 38 | 5.0 | 0.17 | ug/L | 1 | | 8260B | Total/NA | Client Sample ID: MW4 Lab Sample ID: 500-79349-4 | Analyte | Result Qualifier | RL | MDL Unit | Dil Fac D | Method | Prep Type | |------------------------|------------------|-----|-----------|-----------|--------|-----------| | Vinyl chloride | 20 | 2.0 | 0.10 ug/L | | 8260B | Total/NA | | 1,1-Dichloroethane | 15 | 5.0 | 0.19 ug/L | 1 | 8260B | Total/NA | | cis-1,2-Dichloroethene | 34 | 5.0 | 0.12 ug/L | 1 | 8260B | Total/NA | | 1,1,1-Trichloroethane | 6.3 | 5.0 | 0.20 ug/L | 1 | 8260B | Total/NA | **Client Sample ID: MW5** Lab Sample ID: 500-79349-5 | | Result | Qualifier | RL | MDL | Unit | Dil Fac | D | Method | Prep Type | |------------------------|--------|-----------|-----|------|------|---------|---|--------|-----------| | 1,1-Dichloroethene | 13 | | 5.0 | 0.31 | ug/L | 1 | _ | 8260B | Total/NA | | cis-1,2-Dichloroethene | 27 | | 5.0 | 0.12 | ug/L | 1 | | 8260B | Total/NA | | 1,1,1-Trichloroethane | 12 | | 5.0 | 0.20 | ug/L | 1 | | 8260B | Total/NA | | Trichloroethene | 140 | | 5.0 | 0.19 | ug/L | 1 | | 8260B | Total/NA | | Tetrachloroethene | 43 | | 5.0 | 0.17 | ug/L | 1 | | 8260B | Total/NA | Client Sample ID: MW6 Lab Sample ID: 500-79349-6 | -
Analyte | Result Qualifier | RL | MDL Unit | Dil Fac D | Method | Prep Type | |------------------------|------------------|-----|-----------|-----------|--------|-----------| | Vinyl chloride | | 2.0 | 0.10 ug/L | | 8260B | Total/NA | | 1,1-Dichloroethene | 11 | 5.0 | 0.31 ug/L | 1 | 8260B | Total/NA | | 1,1-Dichloroethane | 12 | 5.0 | 0.19 ug/L | 1 | 8260B | Total/NA | | cis-1,2-Dichloroethene | 38 | 5.0 | 0.12 ug/L | 1 | 8260B | Total/NA | | 1,1,1-Trichloroethane | 13 | 5.0 | 0.20 ug/L | 1 | 8260B | Total/NA | | Trichloroethene | 140 | 5.0 | 0.19 ug/L | 1 | 8260B | Total/NA | This Detection Summary does not include radiochemical test results. TestAmerica Chicago Client: Environmental Information Logistics (EIL Project/Site: Interstate
Pollution Control Site TestAmerica Job ID: 500-79349-1 Lab Sample ID: 500-79349-6 3 J 4 6 8 11 12 14 | Analyte | Result Qualifier | RL | MDL Unit | Dil Fac [|) Method | Prep Type | |-------------------|------------------|-----|-----------|-----------|----------|-----------| | Tetrachloroethene | 49 | 5.0 | 0.17 ug/L | 1 | 8260B | Total/NA | Client Sample ID: MW7 Lab Sample ID: 500-79349-7 | Analyte | Result Qualifier | RL | MDL Unit | Dil Fac | D Method | Prep Type | |------------------------|------------------|-----|-----------|---------|----------|-----------| | Vinyl chloride | 17 | 2.0 | 0.10 ug/L | 1 | 8260B | Total/NA | | 1,1-Dichloroethene | 9.5 | 5.0 | 0.31 ug/L | 1 | 8260B | Total/NA | | 1,1-Dichloroethane | 14 | 5.0 | 0.19 ug/L | 1 | 8260B | Total/NA | | cis-1,2-Dichloroethene | 160 | 5.0 | 0.12 ug/L | 1 | 8260B | Total/NA | | Trichloroethene | 15 | 5.0 | 0.19 ug/L | 1 | 8260B | Total/NA | Client Sample ID: MW8 Lab Sample ID: 500-79349-8 | Analyte | Result | Qualifier | RL | MDL | Unit | Dil Fac | D | Method | Prep Type | |------------------------|--------|-----------|-----|------|------|---------|---|--------|-----------| | 1,1-Dichloroethane | 8.9 | | 5.0 | 0.19 | ug/L | 1 | _ | 8260B | Total/NA | | cis-1,2-Dichloroethene | 14 | | 5.0 | 0.12 | ug/L | 1 | | 8260B | Total/NA | | Trichloroethene | 47 | | 5.0 | 0.19 | ug/L | 1 | | 8260B | Total/NA | | Tetrachloroethene | 10 | | 5.0 | 0.17 | ug/L | 1 | | 8260B | Total/NA | Client Sample ID: MW9 Lab Sample ID: 500-79349-9 No Detections. Client Sample ID: FB Lab Sample ID: 500-79349-10 No Detections. Client Sample ID: Trip Blank Lab Sample ID: 500-79349-11 No Detections. ### **Method Summary** Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-79349-1 | Method | Method Description | Protocol | Laboratory | |--------|------------------------------------|----------|------------| | 8260B | Volatile Organic Compounds (GC/MS) | SW846 | TAL CHI | #### **Protocol References:** SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. #### Laboratory References: TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200 6 4 5 6 8 46 11 13 14 ## **Sample Summary** Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-79349-1 | Lab Sample ID | Client Sample ID | Matrix | Collected | Received | |---------------|------------------|--------|----------------|----------------| | 500-79349-1 | MW1 | Water | 06/23/14 15:00 | 06/24/14 10:10 | | 500-79349-2 | MW2 | Water | 06/23/14 14:30 | 06/24/14 10:10 | | 500-79349-3 | MW3 | Water | 06/23/14 14:00 | 06/24/14 10:10 | | 500-79349-4 | MW4 | Water | 06/23/14 13:30 | 06/24/14 10:10 | | 500-79349-5 | MW5 | Water | 06/23/14 12:59 | 06/24/14 10:10 | | 500-79349-6 | MW6 | Water | 06/23/14 12:30 | 06/24/14 10:10 | | 500-79349-7 | MW7 | Water | 06/23/14 11:45 | 06/24/14 10:10 | | 500-79349-8 | MW8 | Water | 06/23/14 11:10 | 06/24/14 10:10 | | 500-79349-9 | MW9 | Water | 06/23/14 11:23 | 06/24/14 10:10 | | 500-79349-10 | FB | Water | 06/23/14 00:00 | 06/24/14 10:10 | | 500-79349-11 | Trip Blank | Water | 06/23/14 00:00 | 06/24/14 10:10 | 7 4 _ 7 8 4.6 4 4 12 13 Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-79349-1 Lab Sample ID: 500-79349-1 Matrix: Water Client Sample ID: MW1 Date Collected: 06/23/14 15:00 Date Received: 06/24/14 10:10 | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |------------------------------|-----------|-----------|----------|-------|------|---|----------|----------------|---------| | Benzene | <5.0 | | 5.0 | 0.074 | ug/L | | | 06/26/14 15:27 | 1 | | Chloromethane | <5.0 | | 5.0 | 0.18 | ug/L | | | 06/26/14 15:27 | 1 | | Vinyl chloride | 17 | | 2.0 | 0.10 | ug/L | | | 06/26/14 15:27 | 1 | | Bromomethane | <5.0 | | 5.0 | 0.31 | ug/L | | | 06/26/14 15:27 | 1 | | Chloroethane | <5.0 | | 5.0 | 0.34 | ug/L | | | 06/26/14 15:27 | 1 | | 1,1-Dichloroethene | 9.7 | | 5.0 | 0.31 | ug/L | | | 06/26/14 15:27 | 1 | | Carbon disulfide | <5.0 | | 5.0 | 0.43 | ug/L | | | 06/26/14 15:27 | 1 | | Acetone | <20 | | 20 | 1.3 | ug/L | | | 06/26/14 15:27 | 1 | | Methylene Chloride | <10 | | 10 | 0.68 | ug/L | | | 06/26/14 15:27 | 1 | | trans-1,2-Dichloroethene | <5.0 | | 5.0 | 0.25 | ug/L | | | 06/26/14 15:27 | 1 | | 1,1-Dichloroethane | 14 | | 5.0 | 0.19 | ug/L | | | 06/26/14 15:27 | 1 | | cis-1,2-Dichloroethene | 160 | | 5.0 | 0.12 | ug/L | | | 06/26/14 15:27 | 1 | | Methyl Ethyl Ketone | <20 | | 20 | 1.5 | ug/L | | | 06/26/14 15:27 | 1 | | Chloroform | <5.0 | | 5.0 | 0.20 | ug/L | | | 06/26/14 15:27 | 1 | | 1,1,1-Trichloroethane | <5.0 | | 5.0 | 0.20 | ug/L | | | 06/26/14 15:27 | 1 | | Carbon tetrachloride | <5.0 | | 5.0 | 0.26 | ug/L | | | 06/26/14 15:27 | 1 | | 1,2-Dichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 06/26/14 15:27 | 1 | | Trichloroethene | 16 | | 5.0 | 0.19 | ug/L | | | 06/26/14 15:27 | 1 | | 1,2-Dichloropropane | <5.0 | | 5.0 | 0.20 | ug/L | | | 06/26/14 15:27 | 1 | | Bromodichloromethane | <5.0 | | 5.0 | 0.17 | ug/L | | | 06/26/14 15:27 | 1 | | cis-1,3-Dichloropropene | <5.0 | | 5.0 | 0.18 | ug/L | | | 06/26/14 15:27 | 1 | | methyl isobutyl ketone | <20 | | 20 | 0.33 | ug/L | | | 06/26/14 15:27 | 1 | | Toluene | <5.0 | | 5.0 | 0.11 | ug/L | | | 06/26/14 15:27 | 1 | | trans-1,3-Dichloropropene | <5.0 | | 5.0 | 0.21 | ug/L | | | 06/26/14 15:27 | 1 | | 1,1,2-Trichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 06/26/14 15:27 | 1 | | Tetrachloroethene | <5.0 | | 5.0 | 0.17 | ug/L | | | 06/26/14 15:27 | 1 | | 2-Hexanone | <20 | | 20 | 0.56 | ug/L | | | 06/26/14 15:27 | 1 | | Dibromochloromethane | <5.0 | | 5.0 | 0.32 | ug/L | | | 06/26/14 15:27 | 1 | | Chlorobenzene | <5.0 | | 5.0 | 0.14 | ug/L | | | 06/26/14 15:27 | 1 | | Ethylbenzene | <5.0 | | 5.0 | 0.13 | ug/L | | | 06/26/14 15:27 | 1 | | Styrene | <5.0 | | 5.0 | 0.10 | ug/L | | | 06/26/14 15:27 | 1 | | Bromoform | <5.0 | | 5.0 | 0.28 | ug/L | | | 06/26/14 15:27 | 1 | | 1,1,2,2-Tetrachloroethane | <5.0 | | 5.0 | 0.23 | ug/L | | | 06/26/14 15:27 | 1 | | Xylenes, Total | <5.0 | | 5.0 | 0.068 | ug/L | | | 06/26/14 15:27 | 1 | | Surrogate | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | 1,2-Dichloroethane-d4 (Surr) | 96 | | 75 - 125 | | | _ | | 06/26/14 15:27 | 1 | | Toluene-d8 (Surr) | 99 | | 75 - 120 | | | | | 06/26/14 15:27 | 1 | | 4-Bromofluorobenzene (Surr) | 91 | | 75 - 120 | | | | | 06/26/14 15:27 | 1 | | Dibromofluoromethane | 97 | | 75 - 120 | | | | | 06/26/14 15:27 | 1 | Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-79349-1 Lab Sample ID: 500-79349-2 **Client Sample ID: MW2** **Matrix: Water** Date Collected: 06/23/14 14:30 Date Received: 06/24/14 10:10 | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fa | |------------------------------|-----------|-----------|----------|-------|------|---|----------|----------------|--------| | Benzene | <5.0 | | 5.0 | 0.074 | ug/L | | | 06/26/14 15:52 | | | Chloromethane | <5.0 | | 5.0 | 0.18 | ug/L | | | 06/26/14 15:52 | | | Vinyl chloride | <2.0 | | 2.0 | 0.10 | ug/L | | | 06/26/14 15:52 | | | Bromomethane | <5.0 | | 5.0 | 0.31 | ug/L | | | 06/26/14 15:52 | | | Chloroethane | <5.0 | | 5.0 | 0.34 | ug/L | | | 06/26/14 15:52 | | | 1,1-Dichloroethene | 11 | | 5.0 | 0.31 | ug/L | | | 06/26/14 15:52 | | | Carbon disulfide | <5.0 | | 5.0 | 0.43 | ug/L | | | 06/26/14 15:52 | | | Acetone | <20 | | 20 | 1.3 | ug/L | | | 06/26/14 15:52 | | | Methylene Chloride | <10 | | 10 | 0.68 | ug/L | | | 06/26/14 15:52 | | | trans-1,2-Dichloroethene | <5.0 | | 5.0 | 0.25 | ug/L | | | 06/26/14 15:52 | | | 1,1-Dichloroethane | <5.0 | | 5.0 | 0.19 | ug/L | | | 06/26/14 15:52 | | | cis-1,2-Dichloroethene | 31 | | 5.0 | 0.12 | ug/L | | | 06/26/14 15:52 | | | Methyl Ethyl Ketone | <20 | | 20 | 1.5 | ug/L | | | 06/26/14 15:52 | | | Chloroform | <5.0 | | 5.0 | 0.20 | ug/L | | | 06/26/14 15:52 | | | 1,1,1-Trichloroethane | 10 | | 5.0 | 0.20 | ug/L | | | 06/26/14 15:52 | | | Carbon tetrachloride | <5.0 | | 5.0 | 0.26 | ug/L | | | 06/26/14 15:52 | | | 1,2-Dichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 06/26/14 15:52 | | | Trichloroethene | 180 | | 5.0 | 0.19 | ug/L | | | 06/26/14 15:52 | | | 1,2-Dichloropropane | <5.0 | | 5.0 | 0.20 | ug/L | | | 06/26/14 15:52 | | | Bromodichloromethane | <5.0 | | 5.0 | 0.17 | ug/L | | | 06/26/14 15:52 | | | cis-1,3-Dichloropropene | <5.0 | | 5.0 | 0.18 | ug/L | | | 06/26/14 15:52 | | | methyl isobutyl ketone | <20 | | 20 | 0.33 | ug/L | | | 06/26/14 15:52 | | | Toluene | <5.0 | | 5.0 | 0.11 | ug/L | | | 06/26/14 15:52 | | | trans-1,3-Dichloropropene | <5.0 | | 5.0 | 0.21 | ug/L | | | 06/26/14 15:52 | | | 1,1,2-Trichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 06/26/14 15:52 | | | Tetrachloroethene | 31 | | 5.0 | 0.17 | ug/L | | | 06/26/14 15:52 | | | 2-Hexanone | <20 | | 20 | 0.56 | ug/L | | | 06/26/14 15:52 | | | Dibromochloromethane | <5.0 | | 5.0 | 0.32 | ug/L | | | 06/26/14 15:52 | | | Chlorobenzene | <5.0 | | 5.0 | 0.14 | ug/L | | | 06/26/14 15:52 | | | Ethylbenzene | <5.0 | | 5.0 | 0.13 | ug/L | | | 06/26/14 15:52 | | | Styrene | <5.0 | | 5.0 | 0.10 | ug/L | | | 06/26/14 15:52 | | | Bromoform | <5.0 | | 5.0 | 0.28 | ug/L | | | 06/26/14 15:52 | | | 1,1,2,2-Tetrachloroethane | <5.0 | | 5.0 | 0.23 | ug/L | | | 06/26/14 15:52 | | | Xylenes, Total | <5.0 | | 5.0 | 0.068 | ug/L | | | 06/26/14 15:52 | | | Surrogate | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fa | | 1,2-Dichloroethane-d4 (Surr) | 96 | | 75 - 125 | | | - | | 06/26/14 15:52 | | | Toluene-d8 (Surr) | 98 | | 75 - 120 | | | | | 06/26/14 15:52 | | | 4-Bromofluorobenzene (Surr) | 91 | | 75 - 120 | | | | | 06/26/14 15:52 | | | Dibromofluoromethane | 96 |
 75 - 120 | | | | | 06/26/14 15:52 | | Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-79349-1 Lab Sample ID: 500-79349-3 Matrix: Water **Client Sample ID: MW3** Date Collected: 06/23/14 14:00 Date Received: 06/24/14 10:10 | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |------------------------------|-----------|-----------|----------|-------|------|---|----------|----------------|---------| | Benzene | <5.0 | | 5.0 | 0.074 | ug/L | | | 06/26/14 16:17 | 1 | | Chloromethane | <5.0 | | 5.0 | 0.18 | ug/L | | | 06/26/14 16:17 | 1 | | Vinyl chloride | <2.0 | | 2.0 | 0.10 | ug/L | | | 06/26/14 16:17 | 1 | | Bromomethane | <5.0 | | 5.0 | 0.31 | ug/L | | | 06/26/14 16:17 | 1 | | Chloroethane | <5.0 | | 5.0 | 0.34 | ug/L | | | 06/26/14 16:17 | 1 | | 1,1-Dichloroethene | 11 | | 5.0 | 0.31 | ug/L | | | 06/26/14 16:17 | 1 | | Carbon disulfide | <5.0 | | 5.0 | 0.43 | ug/L | | | 06/26/14 16:17 | 1 | | Acetone | <20 | | 20 | 1.3 | ug/L | | | 06/26/14 16:17 | 1 | | Methylene Chloride | <10 | | 10 | 0.68 | ug/L | | | 06/26/14 16:17 | 1 | | trans-1,2-Dichloroethene | <5.0 | | 5.0 | 0.25 | ug/L | | | 06/26/14 16:17 | 1 | | 1,1-Dichloroethane | <5.0 | | 5.0 | 0.19 | ug/L | | | 06/26/14 16:17 | 1 | | cis-1,2-Dichloroethene | 26 | | 5.0 | 0.12 | ug/L | | | 06/26/14 16:17 | 1 | | Methyl Ethyl Ketone | <20 | | 20 | 1.5 | ug/L | | | 06/26/14 16:17 | 1 | | Chloroform | <5.0 | | 5.0 | 0.20 | ug/L | | | 06/26/14 16:17 | 1 | | 1,1,1-Trichloroethane | 11 | | 5.0 | 0.20 | ug/L | | | 06/26/14 16:17 | 1 | | Carbon tetrachloride | <5.0 | | 5.0 | 0.26 | ug/L | | | 06/26/14 16:17 | 1 | | 1,2-Dichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 06/26/14 16:17 | 1 | | Trichloroethene | 200 | | 5.0 | 0.19 | ug/L | | | 06/26/14 16:17 | 1 | | 1,2-Dichloropropane | <5.0 | | 5.0 | 0.20 | ug/L | | | 06/26/14 16:17 | 1 | | Bromodichloromethane | <5.0 | | 5.0 | 0.17 | ug/L | | | 06/26/14 16:17 | 1 | | cis-1,3-Dichloropropene | <5.0 | | 5.0 | 0.18 | ug/L | | | 06/26/14 16:17 | 1 | | methyl isobutyl ketone | <20 | | 20 | 0.33 | ug/L | | | 06/26/14 16:17 | 1 | | Toluene | <5.0 | | 5.0 | 0.11 | ug/L | | | 06/26/14 16:17 | 1 | | trans-1,3-Dichloropropene | <5.0 | | 5.0 | 0.21 | ug/L | | | 06/26/14 16:17 | 1 | | 1,1,2-Trichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 06/26/14 16:17 | 1 | | Tetrachloroethene | 38 | | 5.0 | 0.17 | ug/L | | | 06/26/14 16:17 | 1 | | 2-Hexanone | <20 | | 20 | 0.56 | ug/L | | | 06/26/14 16:17 | 1 | | Dibromochloromethane | <5.0 | | 5.0 | 0.32 | ug/L | | | 06/26/14 16:17 | 1 | | Chlorobenzene | <5.0 | | 5.0 | 0.14 | ug/L | | | 06/26/14 16:17 | 1 | | Ethylbenzene | <5.0 | | 5.0 | 0.13 | ug/L | | | 06/26/14 16:17 | 1 | | Styrene | <5.0 | | 5.0 | 0.10 | ug/L | | | 06/26/14 16:17 | 1 | | Bromoform | <5.0 | | 5.0 | 0.28 | ug/L | | | 06/26/14 16:17 | 1 | | 1,1,2,2-Tetrachloroethane | <5.0 | | 5.0 | 0.23 | ug/L | | | 06/26/14 16:17 | 1 | | Xylenes, Total | <5.0 | | 5.0 | 0.068 | ug/L | | | 06/26/14 16:17 | 1 | | Surrogate | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | 1,2-Dichloroethane-d4 (Surr) | 97 | | 75 - 125 | | | - | | 06/26/14 16:17 | 1 | | Toluene-d8 (Surr) | 98 | | 75 - 120 | | | | | 06/26/14 16:17 | 1 | | 4-Bromofluorobenzene (Surr) | 91 | | 75 - 120 | | | | | 06/26/14 16:17 | 1 | | Dibromofluoromethane | 97 | | 75 - 120 | | | | | 06/26/14 16:17 | 1 | 2 4 6 7 9 10 12 Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-79349-1 Lab Sample ID: 500-79349-4 Matrix: Water Client Sample ID: MW4 Date Collected: 06/23/14 13:30 Date Received: 06/24/14 10:10 | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |------------------------------|-----------|-----------|----------|-------|------|---|----------|----------------|---------| | Benzene | <5.0 | | 5.0 | 0.074 | ug/L | | | 06/26/14 16:42 | 1 | | Chloromethane | <5.0 | | 5.0 | 0.18 | ug/L | | | 06/26/14 16:42 | 1 | | Vinyl chloride | 20 | | 2.0 | 0.10 | ug/L | | | 06/26/14 16:42 | 1 | | Bromomethane | <5.0 | | 5.0 | 0.31 | ug/L | | | 06/26/14 16:42 | 1 | | Chloroethane | <5.0 | | 5.0 | 0.34 | ug/L | | | 06/26/14 16:42 | 1 | | 1,1-Dichloroethene | <5.0 | | 5.0 | 0.31 | ug/L | | | 06/26/14 16:42 | 1 | | Carbon disulfide | <5.0 | | 5.0 | 0.43 | ug/L | | | 06/26/14 16:42 | 1 | | Acetone | <20 | | 20 | 1.3 | ug/L | | | 06/26/14 16:42 | 1 | | Methylene Chloride | <10 | | 10 | 0.68 | ug/L | | | 06/26/14 16:42 | 1 | | trans-1,2-Dichloroethene | <5.0 | | 5.0 | 0.25 | ug/L | | | 06/26/14 16:42 | 1 | | 1,1-Dichloroethane | 15 | | 5.0 | 0.19 | ug/L | | | 06/26/14 16:42 | 1 | | cis-1,2-Dichloroethene | 34 | | 5.0 | 0.12 | ug/L | | | 06/26/14 16:42 | 1 | | Methyl Ethyl Ketone | <20 | | 20 | 1.5 | ug/L | | | 06/26/14 16:42 | 1 | | Chloroform | <5.0 | | 5.0 | 0.20 | ug/L | | | 06/26/14 16:42 | 1 | | 1,1,1-Trichloroethane | 6.3 | | 5.0 | 0.20 | ug/L | | | 06/26/14 16:42 | 1 | | Carbon tetrachloride | <5.0 | | 5.0 | 0.26 | ug/L | | | 06/26/14 16:42 | 1 | | 1,2-Dichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 06/26/14 16:42 | 1 | | Trichloroethene | <5.0 | | 5.0 | 0.19 | ug/L | | | 06/26/14 16:42 | 1 | | 1,2-Dichloropropane | <5.0 | | 5.0 | 0.20 | ug/L | | | 06/26/14 16:42 | 1 | | Bromodichloromethane | <5.0 | | 5.0 | 0.17 | ug/L | | | 06/26/14 16:42 | 1 | | cis-1,3-Dichloropropene | <5.0 | | 5.0 | 0.18 | ug/L | | | 06/26/14 16:42 | 1 | | methyl isobutyl ketone | <20 | | 20 | 0.33 | ug/L | | | 06/26/14 16:42 | 1 | | Toluene | <5.0 | | 5.0 | 0.11 | ug/L | | | 06/26/14 16:42 | 1 | | trans-1,3-Dichloropropene | <5.0 | | 5.0 | 0.21 | ug/L | | | 06/26/14 16:42 | 1 | | 1,1,2-Trichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 06/26/14 16:42 | 1 | | Tetrachloroethene | <5.0 | | 5.0 | 0.17 | ug/L | | | 06/26/14 16:42 | 1 | | 2-Hexanone | <20 | | 20 | 0.56 | ug/L | | | 06/26/14 16:42 | 1 | | Dibromochloromethane | <5.0 | | 5.0 | 0.32 | ug/L | | | 06/26/14 16:42 | 1 | | Chlorobenzene | <5.0 | | 5.0 | 0.14 | ug/L | | | 06/26/14 16:42 | 1 | | Ethylbenzene | <5.0 | | 5.0 | 0.13 | ug/L | | | 06/26/14 16:42 | 1 | | Styrene | <5.0 | | 5.0 | 0.10 | ug/L | | | 06/26/14 16:42 | 1 | | Bromoform | <5.0 | | 5.0 | 0.28 | ug/L | | | 06/26/14 16:42 | 1 | | 1,1,2,2-Tetrachloroethane | <5.0 | | 5.0 | 0.23 | ug/L | | | 06/26/14 16:42 | 1 | | Xylenes, Total | <5.0 | | 5.0 | 0.068 | ug/L | | | 06/26/14 16:42 | 1 | | Surrogate | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | 1,2-Dichloroethane-d4 (Surr) | 97 | | 75 - 125 | | | _ | | 06/26/14 16:42 | 1 | | Toluene-d8 (Surr) | 98 | | 75 - 120 | | | | | 06/26/14 16:42 | 1 | | 4-Bromofluorobenzene (Surr) | 91 | | 75 - 120 | | | | | 06/26/14 16:42 | 1 | | Dibromofluoromethane | 97 | | 75 - 120 | | | | | 06/26/14 16:42 | 1 | Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-79349-1 Lab Sample ID: 500-79349-5 Matrix: Water Client Sample ID: MW5 Date Collected: 06/23/14 12:59 Date Received: 06/24/14 10:10 | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |------------------------------|-----------|-----------|----------|-------|------|---|----------|----------------|---------| | Benzene | <5.0 | | 5.0 | 0.074 | ug/L | | | 06/26/14 17:07 | 1 | | Chloromethane | <5.0 | | 5.0 | 0.18 | ug/L | | | 06/26/14 17:07 | 1 | | Vinyl chloride | <2.0 | | 2.0 | 0.10 | ug/L | | | 06/26/14 17:07 | 1 | | Bromomethane | <5.0 | | 5.0 | 0.31 | ug/L | | | 06/26/14 17:07 | 1 | | Chloroethane | <5.0 | | 5.0 | 0.34 | ug/L | | | 06/26/14 17:07 | 1 | | 1,1-Dichloroethene | 13 | | 5.0 | 0.31 | ug/L | | | 06/26/14 17:07 | 1 | | Carbon disulfide | <5.0 | | 5.0 | 0.43 | ug/L | | | 06/26/14 17:07 | 1 | | Acetone | <20 | | 20 | 1.3 | ug/L | | | 06/26/14 17:07 | 1 | | Methylene Chloride | <10 | | 10 | 0.68 | ug/L | | | 06/26/14 17:07 | 1 | | trans-1,2-Dichloroethene | <5.0 | | 5.0 | 0.25 | ug/L | | | 06/26/14 17:07 | 1 | | 1,1-Dichloroethane | <5.0 | | 5.0 | 0.19 | ug/L | | | 06/26/14 17:07 | 1 | | cis-1,2-Dichloroethene | 27 | | 5.0 | 0.12 | ug/L | | | 06/26/14 17:07 | 1 | | Methyl Ethyl Ketone | <20 | | 20 | 1.5 | ug/L | | | 06/26/14 17:07 | 1 | | Chloroform | <5.0 | | 5.0 | 0.20 | ug/L | | | 06/26/14 17:07 | 1 | | 1,1,1-Trichloroethane | 12 | | 5.0 | 0.20 | ug/L | | | 06/26/14 17:07 | 1 | | Carbon tetrachloride | <5.0 | | 5.0 | 0.26 | ug/L | | | 06/26/14 17:07 | 1 | | 1,2-Dichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 06/26/14 17:07 | 1 | | Trichloroethene | 140 | | 5.0 | 0.19 | ug/L | | | 06/26/14 17:07 | 1 | | 1,2-Dichloropropane | <5.0 | | 5.0 | 0.20 | ug/L | | | 06/26/14 17:07 | 1 | | Bromodichloromethane | <5.0 | | 5.0 | 0.17 | ug/L | | | 06/26/14 17:07 | 1 | | cis-1,3-Dichloropropene | <5.0 | | 5.0 | 0.18 | ug/L | | | 06/26/14 17:07 | 1 | | methyl isobutyl ketone | <20 | | 20 | 0.33 | ug/L | | | 06/26/14 17:07 | 1 | | Toluene | <5.0 | | 5.0 | 0.11 | ug/L | | | 06/26/14 17:07 | 1 | | trans-1,3-Dichloropropene | <5.0 | | 5.0 | 0.21 | ug/L | | | 06/26/14 17:07 | 1 | | 1,1,2-Trichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 06/26/14 17:07 | 1 | | Tetrachloroethene | 43 | | 5.0 | 0.17 | ug/L | | | 06/26/14 17:07 | 1 | | 2-Hexanone | <20 | | 20 | 0.56 | ug/L | | | 06/26/14 17:07 | 1 | | Dibromochloromethane | <5.0 | | 5.0 | 0.32 | ug/L | | | 06/26/14 17:07 | | | Chlorobenzene | <5.0 | | 5.0 | 0.14 | ug/L | | | 06/26/14 17:07 | 1 | | Ethylbenzene | <5.0 | | 5.0 | 0.13 | ug/L | | | 06/26/14 17:07 | 1 | | Styrene | <5.0 | | 5.0 | 0.10 | ug/L | | | 06/26/14 17:07 | 1 | | Bromoform | <5.0 | | 5.0 | 0.28 | ug/L | | | 06/26/14 17:07 | 1 | | 1,1,2,2-Tetrachloroethane | <5.0 | | 5.0 | 0.23 | ug/L | | | 06/26/14 17:07 | 1 | | Xylenes, Total | <5.0 | | 5.0 | 0.068 | ug/L | | | 06/26/14 17:07 | 1 | | Surrogate | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | 1,2-Dichloroethane-d4 (Surr) | 97 | | 75 - 125 | | | _ | | 06/26/14 17:07 | | |
Toluene-d8 (Surr) | 98 | | 75 - 120 | | | | | 06/26/14 17:07 | 1 | | 4-Bromofluorobenzene (Surr) | 90 | | 75 - 120 | | | | | 06/26/14 17:07 | 1 | | Dibromofluoromethane | 97 | | 75 - 120 | | | | | 06/26/14 17:07 | 1 | _ 4 6 8 10 11 13 14 Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-79349-1 Lab Sample ID: 500-79349-6 Matrix: Water Client Sample ID: MW6 Date Collected: 06/23/14 12:30 Date Received: 06/24/14 10:10 | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |------------------------------|-----------|-----------|----------|-------|------|---|----------|----------------|---------| | Benzene | <5.0 | | 5.0 | 0.074 | ug/L | | | 06/26/14 17:32 | 1 | | Chloromethane | <5.0 | | 5.0 | 0.18 | ug/L | | | 06/26/14 17:32 | 1 | | Vinyl chloride | 11 | | 2.0 | 0.10 | ug/L | | | 06/26/14 17:32 | 1 | | Bromomethane | <5.0 | | 5.0 | 0.31 | ug/L | | | 06/26/14 17:32 | 1 | | Chloroethane | <5.0 | | 5.0 | 0.34 | ug/L | | | 06/26/14 17:32 | 1 | | 1,1-Dichloroethene | 11 | | 5.0 | 0.31 | ug/L | | | 06/26/14 17:32 | 1 | | Carbon disulfide | <5.0 | | 5.0 | 0.43 | ug/L | | | 06/26/14 17:32 | 1 | | Acetone | <20 | | 20 | 1.3 | ug/L | | | 06/26/14 17:32 | 1 | | Methylene Chloride | <10 | | 10 | 0.68 | ug/L | | | 06/26/14 17:32 | 1 | | trans-1,2-Dichloroethene | <5.0 | | 5.0 | 0.25 | ug/L | | | 06/26/14 17:32 | 1 | | 1,1-Dichloroethane | 12 | | 5.0 | 0.19 | ug/L | | | 06/26/14 17:32 | 1 | | cis-1,2-Dichloroethene | 38 | | 5.0 | 0.12 | ug/L | | | 06/26/14 17:32 | 1 | | Methyl Ethyl Ketone | <20 | | 20 | 1.5 | ug/L | | | 06/26/14 17:32 | 1 | | Chloroform | <5.0 | | 5.0 | 0.20 | ug/L | | | 06/26/14 17:32 | 1 | | 1,1,1-Trichloroethane | 13 | | 5.0 | 0.20 | ug/L | | | 06/26/14 17:32 | 1 | | Carbon tetrachloride | <5.0 | | 5.0 | 0.26 | ug/L | | | 06/26/14 17:32 | 1 | | 1,2-Dichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 06/26/14 17:32 | 1 | | Trichloroethene | 140 | | 5.0 | 0.19 | ug/L | | | 06/26/14 17:32 | 1 | | 1,2-Dichloropropane | <5.0 | | 5.0 | 0.20 | ug/L | | | 06/26/14 17:32 | 1 | | Bromodichloromethane | <5.0 | | 5.0 | 0.17 | ug/L | | | 06/26/14 17:32 | 1 | | cis-1,3-Dichloropropene | <5.0 | | 5.0 | 0.18 | ug/L | | | 06/26/14 17:32 | 1 | | methyl isobutyl ketone | <20 | | 20 | 0.33 | ug/L | | | 06/26/14 17:32 | 1 | | Toluene | <5.0 | | 5.0 | 0.11 | ug/L | | | 06/26/14 17:32 | 1 | | trans-1,3-Dichloropropene | <5.0 | | 5.0 | 0.21 | ug/L | | | 06/26/14 17:32 | 1 | | 1,1,2-Trichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 06/26/14 17:32 | 1 | | Tetrachloroethene | 49 | | 5.0 | 0.17 | ug/L | | | 06/26/14 17:32 | 1 | | 2-Hexanone | <20 | | 20 | 0.56 | ug/L | | | 06/26/14 17:32 | 1 | | Dibromochloromethane | <5.0 | | 5.0 | 0.32 | ug/L | | | 06/26/14 17:32 | 1 | | Chlorobenzene | <5.0 | | 5.0 | 0.14 | ug/L | | | 06/26/14 17:32 | 1 | | Ethylbenzene | <5.0 | | 5.0 | 0.13 | ug/L | | | 06/26/14 17:32 | 1 | | Styrene | <5.0 | | 5.0 | 0.10 | ug/L | | | 06/26/14 17:32 | 1 | | Bromoform | <5.0 | | 5.0 | 0.28 | ug/L | | | 06/26/14 17:32 | 1 | | 1,1,2,2-Tetrachloroethane | <5.0 | | 5.0 | 0.23 | ug/L | | | 06/26/14 17:32 | 1 | | Xylenes, Total | <5.0 | | 5.0 | 0.068 | ug/L | | | 06/26/14 17:32 | 1 | | Surrogate | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | 1,2-Dichloroethane-d4 (Surr) | 97 | | 75 - 125 | | | - | | 06/26/14 17:32 | 1 | | Toluene-d8 (Surr) | 98 | | 75 - 120 | | | | | 06/26/14 17:32 | 1 | | 4-Bromofluorobenzene (Surr) | 90 | | 75 - 120 | | | | | 06/26/14 17:32 | 1 | | Dibromofluoromethane | 97 | | 75 - 120 | | | | | 06/26/14 17:32 | 1 | 3 **O** 7 9 10 12 14 Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-79349-1 Lab Sample ID: 500-79349-7 **Matrix: Water** **Client Sample ID: MW7** Date Collected: 06/23/14 11:45 Date Received: 06/24/14 10:10 | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fa | |------------------------------|-----------|-----------|----------|-------|------|---|----------|----------------|---| | Benzene | <5.0 | | 5.0 | 0.074 | ug/L | | | 06/26/14 17:56 | - | | Chloromethane | <5.0 | | 5.0 | 0.18 | ug/L | | | 06/26/14 17:56 | | | Vinyl chloride | 17 | | 2.0 | 0.10 | ug/L | | | 06/26/14 17:56 | | | Bromomethane | <5.0 | | 5.0 | 0.31 | ug/L | | | 06/26/14 17:56 | · · · · · · · · · · | | Chloroethane | <5.0 | | 5.0 | 0.34 | ug/L | | | 06/26/14 17:56 | | | 1,1-Dichloroethene | 9.5 | | 5.0 | 0.31 | ug/L | | | 06/26/14 17:56 | | | Carbon disulfide | <5.0 | | 5.0 | 0.43 | ug/L | | | 06/26/14 17:56 | | | Acetone | <20 | | 20 | 1.3 | ug/L | | | 06/26/14 17:56 | | | Methylene Chloride | <10 | | 10 | 0.68 | ug/L | | | 06/26/14 17:56 | | | trans-1,2-Dichloroethene | <5.0 | | 5.0 | 0.25 | ug/L | | | 06/26/14 17:56 | · · · · · · · · | | 1,1-Dichloroethane | 14 | | 5.0 | 0.19 | ug/L | | | 06/26/14 17:56 | | | cis-1,2-Dichloroethene | 160 | | 5.0 | 0.12 | ug/L | | | 06/26/14 17:56 | | | Methyl Ethyl Ketone | <20 | | 20 | 1.5 | ug/L | | | 06/26/14 17:56 | | | Chloroform | <5.0 | | 5.0 | 0.20 | ug/L | | | 06/26/14 17:56 | | | 1,1,1-Trichloroethane | <5.0 | | 5.0 | 0.20 | ug/L | | | 06/26/14 17:56 | | | Carbon tetrachloride | <5.0 | | 5.0 | 0.26 | ug/L | | | 06/26/14 17:56 | | | 1,2-Dichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 06/26/14 17:56 | | | Trichloroethene | 15 | | 5.0 | 0.19 | ug/L | | | 06/26/14 17:56 | | | 1,2-Dichloropropane | <5.0 | | 5.0 | 0.20 | ug/L | | | 06/26/14 17:56 | • | | Bromodichloromethane | <5.0 | | 5.0 | 0.17 | ug/L | | | 06/26/14 17:56 | | | cis-1,3-Dichloropropene | <5.0 | | 5.0 | 0.18 | ug/L | | | 06/26/14 17:56 | | | methyl isobutyl ketone | <20 | | 20 | 0.33 | ug/L | | | 06/26/14 17:56 | | | Toluene | <5.0 | | 5.0 | 0.11 | ug/L | | | 06/26/14 17:56 | | | trans-1,3-Dichloropropene | <5.0 | | 5.0 | 0.21 | ug/L | | | 06/26/14 17:56 | | | 1,1,2-Trichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 06/26/14 17:56 | | | Tetrachloroethene | <5.0 | | 5.0 | 0.17 | ug/L | | | 06/26/14 17:56 | | | 2-Hexanone | <20 | | 20 | 0.56 | ug/L | | | 06/26/14 17:56 | | | Dibromochloromethane | <5.0 | | 5.0 | 0.32 | ug/L | | | 06/26/14 17:56 | | | Chlorobenzene | <5.0 | | 5.0 | 0.14 | ug/L | | | 06/26/14 17:56 | | | Ethylbenzene | <5.0 | | 5.0 | 0.13 | ug/L | | | 06/26/14 17:56 | | | Styrene | <5.0 | | 5.0 | 0.10 | ug/L | | | 06/26/14 17:56 | | | Bromoform | <5.0 | | 5.0 | 0.28 | ug/L | | | 06/26/14 17:56 | | | 1,1,2,2-Tetrachloroethane | <5.0 | | 5.0 | 0.23 | ug/L | | | 06/26/14 17:56 | | | Xylenes, Total | <5.0 | | 5.0 | 0.068 | ug/L | | | 06/26/14 17:56 | | | Surrogate | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fa | | 1,2-Dichloroethane-d4 (Surr) | 97 | | 75 - 125 | | | - | | 06/26/14 17:56 | | | Toluene-d8 (Surr) | 98 | | 75 - 120 | | | | | 06/26/14 17:56 | | | 4-Bromofluorobenzene (Surr) | 94 | | 75 - 120 | | | | | 06/26/14 17:56 | | | Dibromofluoromethane | 96 | | 75 - 120 | | | | | 06/26/14 17:56 | | Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-79349-1 Lab Sample ID: 500-79349-8 Matrix: Water Client Sample ID: MW8 Date Collected: 06/23/14 11:10 Date Received: 06/24/14 10:10 Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr) Dibromofluoromethane | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |------------------------------|-----------|-----------|----------|-------|------|---|----------|----------------|---------| | Benzene | <5.0 | | 5.0 | 0.074 | ug/L | | | 06/26/14 18:21 | 1 | | Chloromethane | <5.0 | | 5.0 | 0.18 | ug/L | | | 06/26/14 18:21 | 1 | | Vinyl chloride | <2.0 | | 2.0 | 0.10 | ug/L | | | 06/26/14 18:21 | 1 | | Bromomethane | <5.0 | | 5.0 | 0.31 | ug/L | | | 06/26/14 18:21 | 1 | | Chloroethane | <5.0 | | 5.0 | 0.34 | ug/L | | | 06/26/14 18:21 | 1 | | 1,1-Dichloroethene | <5.0 | | 5.0 | 0.31 | ug/L | | | 06/26/14 18:21 | 1 | | Carbon disulfide | <5.0 | | 5.0 | 0.43 | ug/L | | | 06/26/14 18:21 | 1 | | Acetone | <20 | | 20 | 1.3 | ug/L | | | 06/26/14 18:21 | 1 | | Methylene Chloride | <10 | | 10 | 0.68 | ug/L | | | 06/26/14 18:21 | 1 | | trans-1,2-Dichloroethene | <5.0 | | 5.0 | 0.25 | ug/L | | | 06/26/14 18:21 | 1 | | 1,1-Dichloroethane | 8.9 | | 5.0 | 0.19 | ug/L | | | 06/26/14 18:21 | 1 | | cis-1,2-Dichloroethene | 14 | | 5.0 | 0.12 | ug/L | | | 06/26/14 18:21 | 1 | | Methyl Ethyl Ketone | <20 | | 20 | 1.5 | ug/L | | | 06/26/14 18:21 | 1 | | Chloroform | <5.0 | | 5.0 | 0.20 | ug/L | | | 06/26/14 18:21 | 1 | | 1,1,1-Trichloroethane | <5.0 | | 5.0 | 0.20 | ug/L | | | 06/26/14 18:21 | 1 | | Carbon tetrachloride | <5.0 | | 5.0 | 0.26 | ug/L | | | 06/26/14 18:21 | 1 | | 1,2-Dichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 06/26/14 18:21 | 1 | | Trichloroethene | 47 | | 5.0 | 0.19 | ug/L | | | 06/26/14 18:21 | 1 | | 1,2-Dichloropropane | <5.0 | | 5.0 | 0.20 | ug/L | | | 06/26/14 18:21 | 1 | | Bromodichloromethane | <5.0 | | 5.0 | 0.17 | ug/L | | | 06/26/14 18:21 | 1 | | cis-1,3-Dichloropropene | <5.0 | | 5.0 | 0.18 | ug/L | | | 06/26/14 18:21 | 1 | | methyl isobutyl ketone | <20 | | 20 | 0.33 | ug/L | | | 06/26/14 18:21 | 1 | | Toluene | <5.0 | | 5.0 | 0.11 | ug/L | | | 06/26/14 18:21 | 1 | | trans-1,3-Dichloropropene | <5.0 | | 5.0 | 0.21 | ug/L | | | 06/26/14 18:21 | 1 | | 1,1,2-Trichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 06/26/14 18:21 | 1 | | Tetrachloroethene | 10 | | 5.0 | 0.17 | ug/L | | | 06/26/14 18:21 | 1 | | 2-Hexanone | <20 | | 20 | 0.56 | ug/L | | | 06/26/14 18:21 | 1 | | Dibromochloromethane | <5.0 | | 5.0 | 0.32 | ug/L | | | 06/26/14 18:21 | 1 | | Chlorobenzene | <5.0 | | 5.0 | 0.14 | ug/L | | | 06/26/14 18:21 | 1 | | Ethylbenzene | <5.0 | | 5.0 | 0.13 | ug/L | | | 06/26/14 18:21 | 1 | | Styrene | <5.0 | | 5.0 | 0.10 | ug/L | | | 06/26/14 18:21 | 1 | | Bromoform | <5.0 | | 5.0 | 0.28 | ug/L | | | 06/26/14 18:21 | 1 | |
1,1,2,2-Tetrachloroethane | <5.0 | | 5.0 | 0.23 | ug/L | | | 06/26/14 18:21 | 1 | | Xylenes, Total | <5.0 | | 5.0 | 0.068 | ug/L | | | 06/26/14 18:21 | 1 | | Surrogate | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | 1,2-Dichloroethane-d4 (Surr) | 95 | | 75 - 125 | | | - | | 06/26/14 18:21 | 1 | 06/26/14 18:21 06/26/14 18:21 06/26/14 18:21 75 - 120 75 - 120 75 - 120 99 95 95 3 5 7 9 10 12 Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-79349-1 Lab Sample ID: 500-79349-9 Matrix: Water **Client Sample ID: MW9** Date Collected: 06/23/14 11:23 Date Received: 06/24/14 10:10 | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |------------------------------|-----------|-----------|----------|-------|------|---|----------|----------------|---------| | Benzene | <5.0 | | 5.0 | 0.074 | ug/L | | | 06/26/14 18:46 | 1 | | Chloromethane | <5.0 | | 5.0 | 0.18 | ug/L | | | 06/26/14 18:46 | 1 | | Vinyl chloride | <2.0 | | 2.0 | 0.10 | ug/L | | | 06/26/14 18:46 | 1 | | Bromomethane | <5.0 | | 5.0 | 0.31 | ug/L | | | 06/26/14 18:46 | 1 | | Chloroethane | <5.0 | | 5.0 | 0.34 | ug/L | | | 06/26/14 18:46 | 1 | | 1,1-Dichloroethene | <5.0 | | 5.0 | 0.31 | ug/L | | | 06/26/14 18:46 | 1 | | Carbon disulfide | <5.0 | | 5.0 | 0.43 | ug/L | | | 06/26/14 18:46 | 1 | | Acetone | <20 | | 20 | 1.3 | ug/L | | | 06/26/14 18:46 | 1 | | Methylene Chloride | <10 | | 10 | 0.68 | ug/L | | | 06/26/14 18:46 | 1 | | trans-1,2-Dichloroethene | <5.0 | | 5.0 | 0.25 | ug/L | | | 06/26/14 18:46 | 1 | | 1,1-Dichloroethane | <5.0 | | 5.0 | 0.19 | ug/L | | | 06/26/14 18:46 | 1 | | cis-1,2-Dichloroethene | <5.0 | | 5.0 | 0.12 | ug/L | | | 06/26/14 18:46 | 1 | | Methyl Ethyl Ketone | <20 | | 20 | 1.5 | ug/L | | | 06/26/14 18:46 | 1 | | Chloroform | <5.0 | | 5.0 | 0.20 | ug/L | | | 06/26/14 18:46 | 1 | | 1,1,1-Trichloroethane | <5.0 | | 5.0 | 0.20 | ug/L | | | 06/26/14 18:46 | 1 | | Carbon tetrachloride | <5.0 | | 5.0 | 0.26 | ug/L | | | 06/26/14 18:46 | 1 | | 1,2-Dichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 06/26/14 18:46 | 1 | | Trichloroethene | <5.0 | | 5.0 | 0.19 | ug/L | | | 06/26/14 18:46 | 1 | | 1,2-Dichloropropane | <5.0 | | 5.0 | 0.20 | ug/L | | | 06/26/14 18:46 | 1 | | Bromodichloromethane | <5.0 | | 5.0 | 0.17 | ug/L | | | 06/26/14 18:46 | 1 | | cis-1,3-Dichloropropene | <5.0 | | 5.0 | 0.18 | ug/L | | | 06/26/14 18:46 | 1 | | methyl isobutyl ketone | <20 | | 20 | 0.33 | ug/L | | | 06/26/14 18:46 | 1 | | Toluene | <5.0 | | 5.0 | 0.11 | ug/L | | | 06/26/14 18:46 | 1 | | trans-1,3-Dichloropropene | <5.0 | | 5.0 | 0.21 | ug/L | | | 06/26/14 18:46 | 1 | | 1,1,2-Trichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 06/26/14 18:46 | 1 | | Tetrachloroethene | <5.0 | | 5.0 | 0.17 | ug/L | | | 06/26/14 18:46 | 1 | | 2-Hexanone | <20 | | 20 | 0.56 | ug/L | | | 06/26/14 18:46 | 1 | | Dibromochloromethane | <5.0 | | 5.0 | 0.32 | ug/L | | | 06/26/14 18:46 | 1 | | Chlorobenzene | <5.0 | | 5.0 | 0.14 | ug/L | | | 06/26/14 18:46 | 1 | | Ethylbenzene | <5.0 | | 5.0 | 0.13 | ug/L | | | 06/26/14 18:46 | 1 | | Styrene | <5.0 | | 5.0 | 0.10 | ug/L | | | 06/26/14 18:46 | 1 | | Bromoform | <5.0 | | 5.0 | 0.28 | ug/L | | | 06/26/14 18:46 | 1 | | 1,1,2,2-Tetrachloroethane | <5.0 | | 5.0 | 0.23 | ug/L | | | 06/26/14 18:46 | 1 | | Xylenes, Total | <5.0 | | 5.0 | 0.068 | ug/L | | | 06/26/14 18:46 | 1 | | Surrogate | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | 1,2-Dichloroethane-d4 (Surr) | 100 | | 75 - 125 | | | - | | 06/26/14 18:46 | 1 | | Toluene-d8 (Surr) | 98 | | 75 - 120 | | | | | 06/26/14 18:46 | 1 | | 4-Bromofluorobenzene (Surr) | 91 | | 75 - 120 | | | | | 06/26/14 18:46 | 1 | | Dibromofluoromethane | 97 | | 75 - 120 | | | | | 06/26/14 18:46 | 1 | Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-79349-1 Lab Sample ID: 500-79349-10 Matrix: Water Client Sample ID: FB Date Collected: 06/23/14 00:00 Date Received: 06/24/14 10:10 | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |------------------------------|-----------|-----------|----------|-------|------|---|----------|----------------|-------------------| | Benzene | <5.0 | | 5.0 | 0.074 | ug/L | | | 06/26/14 19:11 | | | Chloromethane | <5.0 | | 5.0 | 0.18 | ug/L | | | 06/26/14 19:11 | • | | Vinyl chloride | <2.0 | | 2.0 | 0.10 | ug/L | | | 06/26/14 19:11 | • | | Bromomethane | <5.0 | | 5.0 | 0.31 | ug/L | | | 06/26/14 19:11 | | | Chloroethane | <5.0 | | 5.0 | 0.34 | ug/L | | | 06/26/14 19:11 | • | | 1,1-Dichloroethene | <5.0 | | 5.0 | 0.31 | ug/L | | | 06/26/14 19:11 | • | | Carbon disulfide | <5.0 | | 5.0 | 0.43 | ug/L | | | 06/26/14 19:11 | | | Acetone | <20 | | 20 | 1.3 | ug/L | | | 06/26/14 19:11 | • | | Methylene Chloride | <10 | | 10 | 0.68 | ug/L | | | 06/26/14 19:11 | • | | trans-1,2-Dichloroethene | <5.0 | | 5.0 | 0.25 | ug/L | | | 06/26/14 19:11 | | | 1,1-Dichloroethane | <5.0 | | 5.0 | 0.19 | ug/L | | | 06/26/14 19:11 | • | | cis-1,2-Dichloroethene | <5.0 | | 5.0 | 0.12 | ug/L | | | 06/26/14 19:11 | • | | Methyl Ethyl Ketone | <20 | | 20 | 1.5 | ug/L | | | 06/26/14 19:11 | · · · · · · · · · | | Chloroform | <5.0 | | 5.0 | 0.20 | ug/L | | | 06/26/14 19:11 | • | | 1,1,1-Trichloroethane | <5.0 | | 5.0 | 0.20 | ug/L | | | 06/26/14 19:11 | • | | Carbon tetrachloride | <5.0 | | 5.0 | 0.26 | ug/L | | | 06/26/14 19:11 | | | 1,2-Dichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 06/26/14 19:11 | | | Trichloroethene | <5.0 | | 5.0 | 0.19 | ug/L | | | 06/26/14 19:11 | • | | 1,2-Dichloropropane | <5.0 | | 5.0 | 0.20 | ug/L | | | 06/26/14 19:11 | | | Bromodichloromethane | <5.0 | | 5.0 | 0.17 | ug/L | | | 06/26/14 19:11 | • | | cis-1,3-Dichloropropene | <5.0 | | 5.0 | 0.18 | ug/L | | | 06/26/14 19:11 | • | | methyl isobutyl ketone | <20 | | 20 | 0.33 | ug/L | | | 06/26/14 19:11 | | | Toluene | <5.0 | | 5.0 | 0.11 | ug/L | | | 06/26/14 19:11 | • | | trans-1,3-Dichloropropene | <5.0 | | 5.0 | 0.21 | ug/L | | | 06/26/14 19:11 | • | | 1,1,2-Trichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 06/26/14 19:11 | • | | Tetrachloroethene | <5.0 | | 5.0 | 0.17 | ug/L | | | 06/26/14 19:11 | • | | 2-Hexanone | <20 | | 20 | 0.56 | ug/L | | | 06/26/14 19:11 | | | Dibromochloromethane | <5.0 | | 5.0 | 0.32 | ug/L | | | 06/26/14 19:11 | | | Chlorobenzene | <5.0 | | 5.0 | 0.14 | ug/L | | | 06/26/14 19:11 | • | | Ethylbenzene | <5.0 | | 5.0 | 0.13 | ug/L | | | 06/26/14 19:11 | • | | Styrene | <5.0 | | 5.0 | 0.10 | ug/L | | | 06/26/14 19:11 | | | Bromoform | <5.0 | | 5.0 | 0.28 | ug/L | | | 06/26/14 19:11 | • | | 1,1,2,2-Tetrachloroethane | <5.0 | | 5.0 | 0.23 | ug/L | | | 06/26/14 19:11 | • | | Xylenes, Total | <5.0 | | 5.0 | 0.068 | ug/L | | | 06/26/14 19:11 | | | Surrogate | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fa | | 1,2-Dichloroethane-d4 (Surr) | 94 | | 75 - 125 | | | - | | 06/26/14 19:11 | | | Toluene-d8 (Surr) | 98 | | 75 - 120 | | | | | 06/26/14 19:11 | - | | 4-Bromofluorobenzene (Surr) | 91 | | 75 - 120 | | | | | 06/26/14 19:11 | | | Dibromofluoromethane | 94 | | 75 - 120 | | | | | 06/26/14 19:11 | | 2 4 9 11 14 Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-79349-1 Lab Sample ID: 500-79349-11 Matrix: Water Client Sample ID: Trip Blank Date Collected: 06/23/14 00:00 Date Received: 06/24/14 10:10 | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | |------------------------------|-----------|-----------|----------|-------|------|---|----------|----------------|---------| | Benzene | <5.0 | | 5.0 | 0.074 | ug/L | | | 06/26/14 19:36 | 1 | | Chloromethane | <5.0 | | 5.0 | 0.18 | ug/L | | | 06/26/14 19:36 | 1 | | Vinyl chloride | <2.0 | | 2.0 | 0.10 | ug/L | | | 06/26/14 19:36 | 1 | | Bromomethane | <5.0 | | 5.0 | 0.31 | ug/L | | | 06/26/14 19:36 | 1 | | Chloroethane | <5.0 | | 5.0 | 0.34 | ug/L | | | 06/26/14 19:36 | 1 | | 1,1-Dichloroethene | <5.0 | | 5.0 | 0.31 | ug/L | | | 06/26/14 19:36 | 1 | | Carbon disulfide | <5.0 | | 5.0 | 0.43 | ug/L | | | 06/26/14 19:36 | 1 | | Acetone | <20 | | 20 | 1.3 | ug/L | | | 06/26/14 19:36 | 1 | | Methylene Chloride | <10 | | 10 | 0.68 | ug/L | | | 06/26/14 19:36 | 1 | | trans-1,2-Dichloroethene | <5.0 | | 5.0 | 0.25 | ug/L | | | 06/26/14 19:36 | 1 | | 1,1-Dichloroethane | <5.0 | | 5.0 | 0.19 | ug/L | | | 06/26/14 19:36 | 1 | | cis-1,2-Dichloroethene | <5.0 | | 5.0 | 0.12 | ug/L | | | 06/26/14 19:36 | 1 | | Methyl Ethyl Ketone | <20 | | 20 | 1.5 | ug/L | | | 06/26/14 19:36 | 1 | | Chloroform | <5.0 | | 5.0 | 0.20 | ug/L | | | 06/26/14 19:36 | 1 | | 1,1,1-Trichloroethane | <5.0 | | 5.0 | 0.20 | ug/L | | | 06/26/14 19:36 | 1 | | Carbon tetrachloride | <5.0 | | 5.0 | 0.26 | ug/L | | | 06/26/14 19:36 | 1 | | 1,2-Dichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 06/26/14 19:36 | 1 | | Trichloroethene | <5.0 | | 5.0 | 0.19 | ug/L | | | 06/26/14 19:36 | 1 | | 1,2-Dichloropropane | <5.0 | | 5.0 | 0.20 | ug/L | | | 06/26/14 19:36 | 1 | | Bromodichloromethane | <5.0 | | 5.0 | 0.17 | ug/L | | | 06/26/14 19:36 | 1 | | cis-1,3-Dichloropropene | <5.0 | | 5.0 | 0.18 | ug/L | | | 06/26/14 19:36 | 1 | | methyl isobutyl ketone | <20 | | 20 | 0.33 | ug/L | | | 06/26/14 19:36 | 1 | | Toluene | <5.0 | | 5.0 | 0.11 | ug/L | | | 06/26/14 19:36 | 1 | | trans-1,3-Dichloropropene | <5.0 | | 5.0 | 0.21 | ug/L | | | 06/26/14 19:36 | 1 | | 1,1,2-Trichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 06/26/14 19:36 | 1 | | Tetrachloroethene | <5.0 | | 5.0 | 0.17 | ug/L | | | 06/26/14 19:36 | 1 | | 2-Hexanone | <20 | | 20 | 0.56 | ug/L | | | 06/26/14 19:36 | 1 | | Dibromochloromethane | <5.0 | | 5.0 | 0.32 | ug/L | | | 06/26/14 19:36 | 1 | | Chlorobenzene | <5.0 | | 5.0 | 0.14 | ug/L | | | 06/26/14 19:36 | 1 | | Ethylbenzene | <5.0 | | 5.0 | 0.13 | ug/L | | | 06/26/14 19:36 | 1 | | Styrene | <5.0 | | 5.0 | 0.10 | ug/L | | |
06/26/14 19:36 | 1 | | Bromoform | <5.0 | | 5.0 | 0.28 | ug/L | | | 06/26/14 19:36 | 1 | | 1,1,2,2-Tetrachloroethane | <5.0 | | 5.0 | 0.23 | ug/L | | | 06/26/14 19:36 | 1 | | Xylenes, Total | <5.0 | | 5.0 | 0.068 | ug/L | | | 06/26/14 19:36 | 1 | | Surrogate | %Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac | | 1,2-Dichloroethane-d4 (Surr) | 96 | | 75 - 125 | | | _ | | 06/26/14 19:36 | 1 | | Toluene-d8 (Surr) | 99 | | 75 - 120 | | | | | 06/26/14 19:36 | 1 | | 4-Bromofluorobenzene (Surr) | 94 | | 75 - 120 | | | | | 06/26/14 19:36 | 1 | | Dibromofluoromethane | 96 | | 75 - 120 | | | | | 06/26/14 19:36 | | 6/27/2014 ### **Definitions/Glossary** Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) TestAmerica Job ID: 500-79349-1 #### **Glossary** TEF TEQ | Abbreviation | These commonly used abbreviations may or may not be present in this report. | |----------------|---| | ¤ | Listed under the "D" column to designate that the result is reported on a dry weight basis | | %R | Percent Recovery | | CFL | Contains Free Liquid | | CNF | Contains no Free Liquid | | DER | Duplicate error ratio (normalized absolute difference) | | Dil Fac | Dilution Factor | | DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample | | DLC | Decision level concentration | | MDA | Minimum detectable activity | | EDL | Estimated Detection Limit | | MDC | Minimum detectable concentration | | MDL | Method Detection Limit | | ML | Minimum Level (Dioxin) | | NC | Not Calculated | | ND | Not detected at the reporting limit (or MDL or EDL if shown) | | PQL | Practical Quantitation Limit | | QC | Quality Control | | RER | Relative error ratio | | RL | Reporting Limit or Requested Limit (Radiochemistry) | | RPD | Relative Percent Difference, a measure of the relative difference between two points | 6 4 5 6 0 10 13 14 ## **QC Association Summary** Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-79349-1 #### **GC/MS VOA** #### Analysis Batch: 242572 | Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch | |------------------|--------------------|-----------|--------|--------|------------| | 500-79349-1 | MW1 | Total/NA | Water | 8260B | _ | | 500-79349-2 | MW2 | Total/NA | Water | 8260B | | | 500-79349-3 | MW3 | Total/NA | Water | 8260B | | | 500-79349-4 | MW4 | Total/NA | Water | 8260B | | | 500-79349-5 | MW5 | Total/NA | Water | 8260B | | | 500-79349-6 | MW6 | Total/NA | Water | 8260B | | | 500-79349-6 MS | MW6 | Total/NA | Water | 8260B | | | 500-79349-6 MSD | MW6 | Total/NA | Water | 8260B | | | 500-79349-7 | MW7 | Total/NA | Water | 8260B | | | 500-79349-8 | MW8 | Total/NA | Water | 8260B | | | 500-79349-9 | MW9 | Total/NA | Water | 8260B | | | 500-79349-10 | FB | Total/NA | Water | 8260B | | | 500-79349-11 | Trip Blank | Total/NA | Water | 8260B | | | LCS 500-242572/4 | Lab Control Sample | Total/NA | Water | 8260B | | | MB 500-242572/6 | Method Blank | Total/NA | Water | 8260B | | 6 Л 6 7 _ 9 10 12 13 TestAmerica Job ID: 500-79349-1 Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site Method: 8260B - Volatile Organic Compounds (GC/MS) Matrix: Water Prep Type: Total/NA | | | | | Percent Sui | rrogate Reco | |------------------|--------------------|----------|----------|-------------|--------------| | | | 12DCE | TOL | BFB | DBFM | | Lab Sample ID | Client Sample ID | (75-125) | (75-120) | (75-120) | (75-120) | | 500-79349-1 | MW1 | 96 | 99 | 91 | 97 | | 500-79349-2 | MW2 | 96 | 98 | 91 | 96 | | 500-79349-3 | MW3 | 97 | 98 | 91 | 97 | | 500-79349-4 | MW4 | 97 | 98 | 91 | 97 | | 500-79349-5 | MW5 | 97 | 98 | 90 | 97 | | 500-79349-6 | MW6 | 97 | 98 | 90 | 97 | | 500-79349-6 MS | MW6 | 93 | 97 | 93 | 95 | | 500-79349-6 MSD | MW6 | 92 | 97 | 92 | 94 | | 500-79349-7 | MW7 | 97 | 98 | 94 | 96 | | 500-79349-8 | MW8 | 95 | 99 | 95 | 95 | | 500-79349-9 | MW9 | 100 | 98 | 91 | 97 | | 500-79349-10 | FB | 94 | 98 | 91 | 94 | | 500-79349-11 | Trip Blank | 96 | 99 | 94 | 96 | | LCS 500-242572/4 | Lab Control Sample | 93 | 98 | 96 | 94 | | MB 500-242572/6 | Method Blank | 94 | 100 | 94 | 94 | **Surrogate Legend** 12DCE = 1,2-Dichloroethane-d4 (Surr) TOL = Toluene-d8 (Surr) BFB = 4-Bromofluorobenzene (Surr) DBFM = Dibromofluoromethane 4 6 8 40 11 12 TestAmerica Job ID: 500-79349-1 Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site Method: 8260B - Volatile Organic Compounds (GC/MS) MR MR Lab Sample ID: MB 500-242572/6 **Matrix: Water** Analysis Batch: 242572 Client Sample ID: Method Blank **Prep Type: Total/NA** | | MB | MB | | | | | | | | |---------------------------|--------|-----------|-----|-------|------|---|----------|----------------|---------| | Analyte | Result | Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac | | Benzene | <5.0 | | 5.0 | 0.074 | ug/L | | | 06/26/14 10:30 | 1 | | Chloromethane | <5.0 | | 5.0 | 0.18 | ug/L | | | 06/26/14 10:30 | 1 | | Vinyl chloride | <2.0 | | 2.0 | 0.10 | ug/L | | | 06/26/14 10:30 | 1 | | Bromomethane | <5.0 | | 5.0 | 0.31 | ug/L | | | 06/26/14 10:30 | 1 | | Chloroethane | <5.0 | | 5.0 | 0.34 | ug/L | | | 06/26/14 10:30 | 1 | | 1,1-Dichloroethene | <5.0 | | 5.0 | 0.31 | ug/L | | | 06/26/14 10:30 | 1 | | Carbon disulfide | <5.0 | | 5.0 | 0.43 | ug/L | | | 06/26/14 10:30 | 1 | | Acetone | <20 | | 20 | 1.3 | ug/L | | | 06/26/14 10:30 | 1 | | Methylene Chloride | <10 | | 10 | 0.68 | ug/L | | | 06/26/14 10:30 | 1 | | trans-1,2-Dichloroethene | <5.0 | | 5.0 | 0.25 | ug/L | | | 06/26/14 10:30 | 1 | | 1,1-Dichloroethane | <5.0 | | 5.0 | 0.19 | ug/L | | | 06/26/14 10:30 | 1 | | cis-1,2-Dichloroethene | <5.0 | | 5.0 | 0.12 | ug/L | | | 06/26/14 10:30 | 1 | | Methyl Ethyl Ketone | <20 | | 20 | 1.5 | ug/L | | | 06/26/14 10:30 | 1 | | Chloroform | <5.0 | | 5.0 | 0.20 | ug/L | | | 06/26/14 10:30 | 1 | | 1,1,1-Trichloroethane | <5.0 | | 5.0 | 0.20 | ug/L | | | 06/26/14 10:30 | 1 | | Carbon tetrachloride | <5.0 | | 5.0 | 0.26 | ug/L | | | 06/26/14 10:30 | 1 | | 1,2-Dichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 06/26/14 10:30 | 1 | | Trichloroethene | <5.0 | | 5.0 | 0.19 | ug/L | | | 06/26/14 10:30 | 1 | | 1,2-Dichloropropane | <5.0 | | 5.0 | 0.20 | ug/L | | | 06/26/14 10:30 | 1 | | Bromodichloromethane | <5.0 | | 5.0 | 0.17 | ug/L | | | 06/26/14 10:30 | 1 | | cis-1,3-Dichloropropene | <5.0 | | 5.0 | 0.18 | ug/L | | | 06/26/14 10:30 | 1 | | methyl isobutyl ketone | <20 | | 20 | 0.33 | ug/L | | | 06/26/14 10:30 | 1 | | Toluene | <5.0 | | 5.0 | 0.11 | ug/L | | | 06/26/14 10:30 | 1 | | trans-1,3-Dichloropropene | <5.0 | | 5.0 | 0.21 | ug/L | | | 06/26/14 10:30 | 1 | | 1,1,2-Trichloroethane | <5.0 | | 5.0 | 0.28 | ug/L | | | 06/26/14 10:30 | 1 | | Tetrachloroethene | <5.0 | | 5.0 | 0.17 | ug/L | | | 06/26/14 10:30 | 1 | | 2-Hexanone | <20 | | 20 | 0.56 | ug/L | | | 06/26/14 10:30 | 1 | | Dibromochloromethane | <5.0 | | 5.0 | 0.32 | ug/L | | | 06/26/14 10:30 | 1 | | Chlorobenzene | <5.0 | | 5.0 | 0.14 | ug/L | | | 06/26/14 10:30 | 1 | | Ethylbenzene | <5.0 | | 5.0 | 0.13 | ug/L | | | 06/26/14 10:30 | 1 | | Styrene | <5.0 | | 5.0 | 0.10 | ug/L | | | 06/26/14 10:30 | 1 | | Bromoform | <5.0 | | 5.0 | | ug/L | | | 06/26/14 10:30 | 1 | | 1,1,2,2-Tetrachloroethane | <5.0 | | 5.0 | | ug/L | | | 06/26/14 10:30 | 1 | | Xylenes, Total | <5.0 | | 5.0 | 0.068 | | | | 06/26/14 10:30 | 1 | | | | | | | - | | | | | | | MB | MB | | | | | |------------------------------|-----------|-----------|----------|----------|----------------|---------| | Surrogate | %Recovery | Qualifier | Limits | Prepared | Analyzed | Dil Fac | | 1,2-Dichloroethane-d4 (Surr) | 94 | | 75 - 125 | | 06/26/14 10:30 | 1 | | Toluene-d8 (Surr) | 100 | | 75 - 120 | | 06/26/14 10:30 | 1 | | 4-Bromofluorobenzene (Surr) | 94 | | 75 - 120 | | 06/26/14 10:30 | 1 | | Dibromofluoromethane | 94 | | 75 120 | | 06/26/14 10:30 | 1 | Lab Sample ID: LCS 500-242572/4 **Matrix: Water** Analysis Batch: 242572 | | Spike | LCS | LCS | | | | %Rec. | | |---------------|-------|--------|-----------|------|---|------|----------|--| | Analyte | Added | Result | Qualifier | Unit | D | %Rec | Limits | | | Benzene | 50.0 | 44.7 | | ug/L | | 89 | 75 - 120 | | | Chloromethane | 50.0 | 50.7 | | ua/l | | 101 | 63 _ 133 | | TestAmerica Chicago Prep Type: Total/NA Client Sample ID: Lab Control Sample Page 22 of 30 Spike LCS LCS TestAmerica Job ID: 500-79349-1 Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued) Lab Sample ID: LCS 500-242572/4 Matrix: Water Analysis Batch: 242572 Client Sample ID: Lab Control Sample Prep Type: Total/NA %Rec. | | • | | | | | | |---------------------------|-------|----------|----------------|--------|----------|--| | Analyte | Added | Result C | Qualifier Unit | D %Rec | Limits | | | Vinyl chloride | 50.0 | 51.4 | ug/L | 103 | 72 - 123 | | | Bromomethane | 50.0 | 61.8 | ug/L | 124 | 45 _ 169 | | | Chloroethane | 50.0 | 61.3 | ug/L | 123 | 58 - 147 | | | 1,1-Dichloroethene | 50.0 | 41.0 | ug/L | 82 | 69 - 120 | | | Carbon disulfide | 50.0 | 37.8 | ug/L | 76 | 56 - 130 | | | Acetone | 50.0 | 57.4 | ug/L | 115 | 48 - 149 | | | Methylene Chloride | 50.0 | 44.0 | ug/L | 88 | 73 - 130 | | | trans-1,2-Dichloroethene | 50.0 | 45.2 | ug/L | 90 | 77 - 120 | | | 1,1-Dichloroethane | 50.0 | 45.1 | ug/L | 90 | 75 - 120 | | | cis-1,2-Dichloroethene | 50.0 | 47.3 | ug/L | 95 | 75 _ 120 | | | Methyl Ethyl Ketone | 50.0 | 50.4 | ug/L | 101 | 53 - 142 | | | Chloroform | 50.0 | 45.2 | ug/L | 90 | 76 - 120 | | | 1,1,1-Trichloroethane | 50.0 | 46.0 | ug/L | 92 | 72 _ 130 | | | Carbon tetrachloride
| 50.0 | 47.9 | ug/L | 96 | 70 - 130 | | | 1,2-Dichloroethane | 50.0 | 45.2 | ug/L | 90 | 69 - 130 | | | Trichloroethene | 50.0 | 49.5 | ug/L | 99 | 75 - 120 | | | 1,2-Dichloropropane | 50.0 | 46.9 | ug/L | 94 | 75 _ 120 | | | Bromodichloromethane | 50.0 | 47.3 | ug/L | 95 | 77 _ 121 | | | cis-1,3-Dichloropropene | 50.0 | 46.4 | ug/L | 93 | 78 - 130 | | | methyl isobutyl ketone | 50.0 | 45.2 | ug/L | 90 | 58 _ 135 | | | Toluene | 50.0 | 46.6 | ug/L | 93 | 75 - 120 | | | trans-1,3-Dichloropropene | 50.0 | 46.3 | ug/L | 93 | 74 - 130 | | | 1,1,2-Trichloroethane | 50.0 | 47.3 | ug/L | 95 | 75 - 120 | | | Tetrachloroethene | 50.0 | 49.6 | ug/L | 99 | 75 - 120 | | | 2-Hexanone | 50.0 | 47.8 | ug/L | 96 | 55 - 140 | | | Dibromochloromethane | 50.0 | 48.7 | ug/L | 97 | 71 - 126 | | | Chlorobenzene | 50.0 | 48.4 | ug/L | 97 | 75 - 120 | | | Ethylbenzene | 50.0 | 49.9 | ug/L | 100 | 75 - 120 | | | Styrene | 50.0 | 48.4 | ug/L | 97 | 75 - 120 | | | Bromoform | 50.0 | 49.5 | ug/L | 99 | 68 - 126 | | | 1,1,2,2-Tetrachloroethane | 50.0 | 45.7 | ug/L | 91 | 72 - 130 | | | Xylenes, Total | 100 | 95.9 | ug/L | 96 | 75 _ 120 | | LCS LCS | Surrogate | %Recovery | Qualifier | Limits | |------------------------------|-----------|-----------|----------| | 1,2-Dichloroethane-d4 (Surr) | 93 | | 75 - 125 | | Toluene-d8 (Surr) | 98 | | 75 - 120 | | 4-Bromofluorobenzene (Surr) | 96 | | 75 - 120 | | Dibromofluoromethane | 94 | | 75 - 120 | Lab Sample ID: 500-79349-6 MS **Matrix: Water** Analysis Batch: 242572 | | | | Client Sample ID: MW6 Prep Type: Total/NA | |---------------|-------|-------|---| | Cample Cample | Snika | Me Me | % Pag | | | Sample | Sample | Spike | MS | MS | | | | %Rec. | | |----------------|--------|-----------|--------------|--------|-----------|------|---|------|----------|--| | Analyte | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits | | | Benzene | <5.0 | | 50.0 | 49.3 | | ug/L | | 99 | 75 - 120 | | | Chloromethane | <5.0 | | 50.0 | 53.7 | | ug/L | | 107 | 63 - 133 | | | Vinyl chloride | 11 | | 50.0 | 65.2 | | ug/L | | 108 | 72 - 123 | | | Bromomethane | <5.0 | | 50.0 | 66.0 | | ug/L | | 132 | 45 - 169 | | TestAmerica Chicago Page 23 of 30 3 6 8 9 11 12 13 TestAmerica Job ID: 500-79349-1 Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued) Lab Sample ID: 500-79349-6 MS **Matrix: Water** **Analysis Batch: 242572** Client Sample ID: MW6 Prep Type: Total/NA | | Sample | Sample | Spike | MS | MS | | | | %Rec. | | |---------------------------|--------|-----------|-------|--------|-----------|------|---|------|---------------------|--| | Analyte | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits | | | Chloroethane | <5.0 | | 50.0 | 63.2 | | ug/L | | 126 | 58 - 147 | | | 1,1-Dichloroethene | 11 | | 50.0 | 55.5 | | ug/L | | 89 | 69 - 120 | | | Carbon disulfide | <5.0 | | 50.0 | 40.3 | | ug/L | | 81 | 56 - 130 | | | Acetone | <20 | | 50.0 | 45.9 | | ug/L | | 92 | 48 - 149 | | | Methylene Chloride | <10 | | 50.0 | 49.0 | | ug/L | | 98 | 73 - 130 | | | trans-1,2-Dichloroethene | <5.0 | | 50.0 | 49.6 | | ug/L | | 97 | 77 - 120 | | | 1,1-Dichloroethane | 12 | | 50.0 | 62.0 | | ug/L | | 100 | 75 ₋ 120 | | | cis-1,2-Dichloroethene | 38 | | 50.0 | 88.9 | | ug/L | | 102 | 75 ₋ 120 | | | Methyl Ethyl Ketone | <20 | | 50.0 | 51.1 | | ug/L | | 102 | 53 - 142 | | | Chloroform | <5.0 | | 50.0 | 50.7 | | ug/L | | 101 | 76 - 120 | | | 1,1,1-Trichloroethane | 13 | | 50.0 | 63.7 | | ug/L | | 102 | 72 - 130 | | | Carbon tetrachloride | <5.0 | | 50.0 | 52.4 | | ug/L | | 105 | 70 - 130 | | | 1,2-Dichloroethane | <5.0 | | 50.0 | 50.7 | | ug/L | | 101 | 69 - 130 | | | Trichloroethene | 140 | | 50.0 | 192 | | ug/L | | 109 | 75 - 120 | | | 1,2-Dichloropropane | <5.0 | | 50.0 | 51.9 | | ug/L | | 104 | 75 ₋ 120 | | | Bromodichloromethane | <5.0 | | 50.0 | 52.1 | | ug/L | | 104 | 77 - 121 | | | cis-1,3-Dichloropropene | <5.0 | | 50.0 | 48.4 | | ug/L | | 97 | 78 ₋ 130 | | | methyl isobutyl ketone | <20 | | 50.0 | 47.5 | | ug/L | | 95 | 58 - 135 | | | Toluene | <5.0 | | 50.0 | 50.4 | | ug/L | | 101 | 75 - 120 | | | trans-1,3-Dichloropropene | <5.0 | | 50.0 | 49.6 | | ug/L | | 99 | 74 - 130 | | | 1,1,2-Trichloroethane | <5.0 | | 50.0 | 54.3 | | ug/L | | 109 | 75 - 120 | | | Tetrachloroethene | 49 | | 50.0 | 103 | | ug/L | | 108 | 75 ₋ 120 | | | 2-Hexanone | <20 | | 50.0 | 48.6 | | ug/L | | 97 | 55 - 140 | | | Dibromochloromethane | <5.0 | | 50.0 | 54.3 | | ug/L | | 109 | 71 - 126 | | | Chlorobenzene | <5.0 | | 50.0 | 53.8 | | ug/L | | 108 | 75 ₋ 120 | | | Ethylbenzene | <5.0 | | 50.0 | 54.8 | | ug/L | | 110 | 75 - 120 | | | Styrene | <5.0 | | 50.0 | 52.5 | | ug/L | | 105 | 75 - 120 | | | Bromoform | <5.0 | | 50.0 | 55.6 | | ug/L | | 111 | 68 - 126 | | | 1,1,2,2-Tetrachloroethane | <5.0 | | 50.0 | 56.5 | | ug/L | | 113 | 72 - 130 | | | Xylenes, Total | <5.0 | | 100 | 105 | | ug/L | | 105 | 75 - 120 | | MS MS | Surrogate | %Recovery | Qualifier | Limits | |------------------------------|-----------|-----------|----------| | 1,2-Dichloroethane-d4 (Surr) | 93 | | 75 - 125 | | Toluene-d8 (Surr) | 97 | | 75 - 120 | | 4-Bromofluorobenzene (Surr) | 93 | | 75 - 120 | | Dibromofluoromethane | 95 | | 75 - 120 | Lab Sample ID: 500-79349-6 MSD **Matrix: Water** **Analysis Batch: 242572** | / indigoto Datom 2 12012 | | | | | | | | | | | | | |--------------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|-----|-------|--| | | Sample | Sample | Spike | MSD | MSD | | | | %Rec. | | RPD | | | Analyte | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits | RPD | Limit | | | Benzene | <5.0 | | 50.0 | 48.3 | | ug/L | _ | 97 | 75 - 120 | 2 | 20 | | | Chloromethane | <5.0 | | 50.0 | 53.3 | 1 | ug/L | | 107 | 63 - 133 | 1 | 20 | | | Vinyl chloride | 11 | | 50.0 | 64.9 | 1 | ug/L | | 108 | 72 - 123 | 0 | 20 | | | Bromomethane | <5.0 | | 50.0 | 63.5 | | ug/L | | 127 | 45 - 169 | 4 | 20 | | | Chloroethane | <5.0 | | 50.0 | 64.0 | ĺ | ug/L | | 128 | 58 - 147 | 1 | 20 | | | 1,1-Dichloroethene | 11 | | 50.0 | 54.6 | İ | ug/L | | 87 | 69 - 120 | 2 | 20 | | | | | | | | | | | | | | | | TestAmerica Chicago Client Sample ID: MW6 Prep Type: Total/NA TestAmerica Job ID: 500-79349-1 Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site 3 Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued) Lab Sample ID: 500-79349-6 MSD **Matrix: Water** **Analysis Batch: 242572** Client Sample ID: MW6 Prep Type: Total/NA | 7 maryolo Batom 2 12012 | Sample | Sample | Spike | MSD | MSD | | | | %Rec. | | RPD | |---------------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|-----|-------| | Analyte | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits | RPD | Limit | | Carbon disulfide | <5.0 | | 50.0 | 39.0 | | ug/L | | 78 | 56 - 130 | 3 | 20 | | Acetone | <20 | | 50.0 | 45.2 | | ug/L | | 90 | 48 - 149 | 1 | 20 | | Methylene Chloride | <10 | | 50.0 | 47.7 | | ug/L | | 95 | 73 - 130 | 3 | 20 | | trans-1,2-Dichloroethene | <5.0 | | 50.0 | 48.4 | | ug/L | | 95 | 77 - 120 | 2 | 20 | | 1,1-Dichloroethane | 12 | | 50.0 | 61.2 | | ug/L | | 98 | 75 - 120 | 1 | 20 | | cis-1,2-Dichloroethene | 38 | | 50.0 | 87.5 | | ug/L | | 100 | 75 - 120 | 2 | 20 | | Methyl Ethyl Ketone | <20 | | 50.0 | 48.2 | | ug/L | | 96 | 53 - 142 | 6 | 20 | | Chloroform | <5.0 | | 50.0 | 50.0 | | ug/L | | 100 | 76 - 120 | 1 | 20 | | 1,1,1-Trichloroethane | 13 | | 50.0 | 63.2 | | ug/L | | 101 | 72 - 130 | 1 | 20 | | Carbon tetrachloride | <5.0 | | 50.0 | 52.0 | | ug/L | | 104 | 70 - 130 | 1 | 20 | | 1,2-Dichloroethane | <5.0 | | 50.0 | 49.6 | | ug/L | | 99 | 69 - 130 | 2 | 20 | | Trichloroethene | 140 | | 50.0 | 191 | | ug/L | | 107 | 75 - 120 | 0 | 20 | | 1,2-Dichloropropane | <5.0 | | 50.0 | 50.7 | | ug/L | | 101 | 75 - 120 | 2 | 20 | | Bromodichloromethane | <5.0 | | 50.0 | 51.5 | | ug/L | | 103 | 77 - 121 | 1 | 20 | | cis-1,3-Dichloropropene | <5.0 | | 50.0 | 48.0 | | ug/L | | 96 | 78 - 130 | 1 | 20 | | methyl isobutyl ketone | <20 | | 50.0 | 47.3 | | ug/L | | 95 | 58 - 135 | 1 | 20 | | Toluene | <5.0 | | 50.0 | 49.4 | | ug/L | | 99 | 75 - 120 | 2 | 20 | | trans-1,3-Dichloropropene | <5.0 | | 50.0 | 49.3 | | ug/L | | 99 | 74 - 130 | 1 | 20 | | 1,1,2-Trichloroethane | <5.0 | | 50.0 | 54.4 | | ug/L | | 109 | 75 - 120 | 0 | 20 | | Tetrachloroethene | 49 | | 50.0 | 102 | | ug/L | | 107 | 75 - 120 | 0 | 20 | | 2-Hexanone | <20 | | 50.0 | 49.4 | | ug/L | | 99 | 55 - 140 | 2 | 20 | | Dibromochloromethane | <5.0 | | 50.0 | 55.1 | | ug/L | | 110 | 71 - 126 | 1 | 20 | | Chlorobenzene | <5.0 | | 50.0 | 53.2 | | ug/L | | 106 | 75 - 120 | 1 | 20 | | Ethylbenzene | <5.0 | | 50.0 | 54.3 | | ug/L | | 109 | 75 - 120 | 1 | 20 | | Styrene | <5.0 | | 50.0 | 52.0 | | ug/L | | 104 | 75 - 120 | 1 | 20 | | Bromoform | <5.0 | | 50.0 | 55.5 | | ug/L | | 111 | 68 - 126 | 0 | 20 | | 1,1,2,2-Tetrachloroethane | <5.0 | | 50.0 | 58.1 | | ug/L | | 116 | 72 - 130 | 3 | 20 | | Xylenes, Total | <5.0 | | 100 | 104 | | ug/L | | 104 | 75 - 120 | 1 | 20 | | | MSD | MSD | | |------------------------------|-----------|-----------|----------| | Surrogate | %Recovery | Qualifier | Limits | | 1,2-Dichloroethane-d4 (Surr) | 92 | | 75 - 125 | | Toluene-d8 (Surr) | 97 | | 75 - 120 | | 4-Bromofluorobenzene (Surr) | 92 | | 75 - 120 | | Dibromofluoromethane | 94 | | 75 - 120 | TestAmerica Chicago Lab Sample ID: 500-79349-1 Date Collected: 06/23/14 15:00 Date Received: 06/24/14 10:10 Client Sample ID: MW1 Matrix: Water Batch Dilution Batch Batch Prepared Method Factor Prep Type Type Run Number or Analyzed Analyst Lab Total/NA Analysis 8260B 242572 06/26/14 15:27 BDA TAL CHI Client Sample ID: MW2 Lab Sample ID: 500-79349-2 Date Collected: 06/23/14 14:30 **Matrix: Water** Date Received: 06/24/14 10:10
Batch Batch Dilution Batch Prepared Method Run Factor Prep Type Туре Number or Analyzed Analyst Lab Total/NA 8260B 06/26/14 15:52 BDA TAL CHI Analysis 242572 **Client Sample ID: MW3** Lab Sample ID: 500-79349-3 **Matrix: Water** Date Collected: 06/23/14 14:00 Date Received: 06/24/14 10:10 | | Batch | Batch | | Dilution | Batch | Prepared | | | |-----------|----------|--------|-----|----------|--------|----------------|---------|---------| | Prep Type | Type | Method | Run | Factor | Number | or Analyzed | Analyst | Lab | | Total/NA | Analysis | 8260B | | 1 | 242572 | 06/26/14 16:17 | BDA | TAL CHI | Client Sample ID: MW4 Lab Sample ID: 500-79349-4 Date Collected: 06/23/14 13:30 **Matrix: Water** Date Received: 06/24/14 10:10 | | Batch | Batch | | Dilution | Batch | Prepared | | | |-----------|----------|--------|-----|----------|--------|----------------|---------|---------| | Prep Type | Type | Method | Run | Factor | Number | or Analyzed | Analyst | Lab | | Total/NA | Analysis | 8260B | | 1 | 242572 | 06/26/14 16:42 | BDA | TAL CHI | Lab Sample ID: 500-79349-5 **Matrix: Water** Date Collected: 06/23/14 12:59 Date Received: 06/24/14 10:10 Date Collected: 06/23/14 12:30 Date Received: 06/24/14 10:10 Client Sample ID: MW5 Batch Dilution Batch Batch Prepared Method Prep Type Туре Run Factor Number or Analyzed Analyst Lab Total/NA 8260B 242572 TAL CHI Analysis 06/26/14 17:07 BDA Client Sample ID: MW6 Lab Sample ID: 500-79349-6 Matrix: Water Batch Batch Dilution Batch Prepared Prep Type Method Type Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260B 06/26/14 17:32 BDA TAL CHI TestAmerica Job ID: 500-79349-1 Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site Lab Sample ID: 500-79349-7 Matrice Matrice Matrix: Water Date Collected: 06/23/14 11:45 Date Received: 06/24/14 10:10 **Client Sample ID: MW7** | | Batch | Batch | | Dilution | Batch | Prepared | | | |-----------|----------|--------|-----|----------|--------|----------------|---------|---------| | Prep Type | Type | Method | Run | Factor | Number | or Analyzed | Analyst | Lab | | Total/NA | Analysis | 8260B | | 1 | 242572 | 06/26/14 17:56 | BDA | TAL CHI | Client Sample ID: MW8 Lab Sample ID: 500-79349-8 Matrix: Water Date Collected: 06/23/14 11:10 Date Received: 06/24/14 10:10 | | Batch | Batch | | Dilution | Batch | Prepared | | | |-----------|----------|--------|-----|----------|--------|----------------|---------|---------| | Prep Type | Type | Method | Run | Factor | Number | or Analyzed | Analyst | Lab | | Total/NA | Analysis | 8260B | | 1 | 242572 | 06/26/14 18:21 | BDA | TAL CHI | Client Sample ID: MW9 Lab Sample ID: 500-79349-9 Date Collected: 06/23/14 11:23 Matrix: Water Date Received: 06/24/14 10:10 | | Batch | Batch | | Dilution | Batch | Prepared | | | |-----------|----------|--------|-----|----------|--------|----------------|---------|---------| | Prep Type | Type | Method | Run | Factor | Number | or Analyzed | Analyst | Lab | | Total/NA | Analysis | 8260B | | 1 | 242572 | 06/26/14 18:46 | BDA | TAL CHI | Client Sample ID: FB Lab Sample ID: 500-79349-10 Date Collected: 06/23/14 00:00 Matrix: Water Date Received: 06/24/14 10:10 | | Batch | Batch | | Dilution | Batch | Prepared | | | |-----------|----------|--------|-----|----------|--------|----------------|---------|---------| | Prep Type | Туре | Method | Run | Factor | Number | or Analyzed | Analyst | Lab | | Total/NA | Analysis | 8260B | | 1 | 242572 | 06/26/14 19:11 | BDA | TAL CHI | Client Sample ID: Trip Blank Lab Sample ID: 500-79349-11 Date Collected: 06/23/14 00:00 Matrix: Water Date Received: 06/24/14 10:10 | | Batch | Batch | | Dilution | Batch | Prepared | | | |-----------|----------|--------|-----|----------|--------|----------------|---------|---------| | Prep Type | Type | Method | Run | Factor | Number | or Analyzed | Analyst | Lab | | Total/NA | Analysis | 8260B | | 1 | 242572 | 06/26/14 19:36 | BDA | TAL CHI | Laboratory References: TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200 ## **Certification Summary** Client: Environmental Information Logistics (EIL Project/Site: Interstate Pollution Control Site TestAmerica Job ID: 500-79349-1 #### **Laboratory: TestAmerica Chicago** The certifications listed below are applicable to this report. | Authority | Program | EPA Region | Certification ID | Expiration Date | |-----------|---------|------------|------------------|------------------------| | Illinois | NELAP | 5 | 100201 | 04-30-15 | A 5 8 46 11 13 14 #### THE LEADER Client 5 8 O - Other SL - Sludge MS - Miscellaneous OL - Oil A – Air | TestAme | erica | Report To | (option | al) | Bill | To | (optional) | | (| | | ly Record | |---|--|-----------|------------------------------|---------------------|------------|--------------|--------------|-----------------|------------------|-------------------------|--------------------|------------------| | THE LEADED IN ENVIRONME | ENTAL TECTINO | | | | | | | | _ | Lab Job #: | 500- | 79349 | | THE LEADER IN ENVIRONM
2417 Bond Street, University Pa | | 1 | • | | | | | | · | | | | | Phone: 708.534.5200 Fax: | 708.534.5211 | Address: | | - | Add | lress: | | | | Chain of Cust | ody Number: | - | | | | Phone: | | | Pho | ne: | | | | Page | of | - | | resserves des Vereis reconsides de estambient de Sañada de Arteriorisa (politicorrecervos é des de dispositiva de Arterioris | болгаст же системня тактитуру каке остановления с том т
- | Fax: | | | Fax | | · | | | Tomporaturo | °C of Cooler; | 3.3 | | Client | Client Project # | E-Mail: | I Duna a susualti sa | T T | PO | #/Reference# | | | | Temperature | T COOLER, | | | Silent | Ollent Project # | | Preservative | | | | | | | | | Preservative Key | | Project Name TPC | | | Parameter | | | | | | | | | 244013
24462 | | Project location/State Sampler O | Lab Project # 5000 [3 |)}S | | | | | | | | | | Kas | | Sampler Brim MiQueer | 1 Lab PM Kichard | Wright | | | | | | | | | | 500-79349 COC | | O Sample ID | Da | Sampling | # of
Containers
Matrix | | | | | | | | | | | 1 MWI | 6-2: | | #0 2 | | | | | | | | | Comments | | 2 Mw2 | ſ | 1430 | | | | | | | | | | | | 3 Mw3 | | 1400 | | | | | | | | | - | - | | 4 MWY | | 1330 | | | | | | | | | | | | 5 Mus | | 1259 | | | | | | | | | | | | 6 MWG | | 1230 | | | | | | | | | | | | 7 MW7 | | 1145 | | | | | | | | | | | | 8 MWK | | 1110 | | | | | | | | | - | | | 9 Mug | | 1123 | Turnaround Time Required (Business Days) 1 Day 2 Days 5 Days Requested Due Date | 7 Days10 Days15 Days | Other | Sample Dispo | osal
n to Client | Disposal t | y Lab | chive for | Months (| (A fee may be as | sessed if samples are r | etained longer tha | n 1 month) | | Relinational By Copy | | | Time | Received By | | Company | | Data / | | Time | | | | Relinquished By Com | ipany Date Date Date Date Date | | 30
Time | Received By | nf | Company | <u></u> | 06/24/1
Vate | У | /0/ 0 | Lab Courier | | | | npany Date | | Time | Received By | | Company | | Date | | Time | Shipped | | | | Tour | | | | | | | | | | Hand Delivered | | | Matrix Key WW - Wastewater SE - Sedime W - Water SO - Soll L - Leachate SL - Sludge W - Wipe MS - Miscellaneous DW - Drinkir |) | | | | | | Lab Comments | | | | | | TAL-4124-500 (1209) 6/27/2014 #### **Login Sample Receipt Checklist** Client: Environmental Information Logistics (EIL Job Number: 500-79349-1 Login Number: 79349 List Source: TestAmerica Chicago List Number: 1 Creator: Kelsey, Shawn M | Creator: Kelsey, Snawn M | | | |--|--------|---------| | Question | Answer | Comment | | Radioactivity wasn't checked or is = background as
measured by a survey meter.</td <td>True</td> <td></td> | True | | | The cooler's custody seal, if present, is intact. | True | | | Sample custody seals, if present, are intact. | True | | | The cooler or samples do not appear to have been compromised or tampered with. | True | | | Samples were received on ice. | True | | | Cooler Temperature is acceptable. | True | | | Cooler Temperature is recorded. | True | 3.3c | | COC is present. | True | | | COC is filled out in ink and legible. | True | | | COC is filled out with all pertinent information. | True | | | Is the Field Sampler's name present on COC? | True | | | There are no discrepancies between the containers received and the COC. | True | | | Samples are received within Holding Time. | True | | | Sample containers have legible labels. | True | | | Containers are not broken or leaking. | True | | | Sample collection date/times are provided. | True | | | Appropriate sample containers are used. | True | | | Sample bottles are completely filled. | True | | | Sample Preservation Verified. | True | | | There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True | | | Containers requiring zero headspace have no headspace or bubble is <6mm (1/4"). | True | | | Multiphasic samples are not present. | True | | | Samples do not require splitting or compositing. | True | | | Residual Chlorine Checked. | True | | 2 6 ŏ 4 4 12 4 1 # Attachment 4 Data Summary Table #### December 2013 Through June 2014 Data Summary IPC/Roto-Rooter Site | | | | | 1. | PC/Roto-Roc | ici bite | | | | | | | | |------|--------------|--------------|------------------------|-------|-------------|-----------|--------|------|--------|------|--------|------|-------------| | | | | | | Interwell | Intrawell | Dec | :-13 | Jan | -14 | Jun | -14 | | | | | | | | Upper | Upper | | | | | | | Reporting | | | | | | | Limit | Limit | | | | | | | Period | | Well | Location | Parameter ID | Parameter | Units | (95%) | (99%) | Result | Qual | Result | Qual | Result | Qual | Exceedance? | | MW1 | Downgradient | 190494 | 1,1,1-Trichloroethane | ug/L | 52.5 | 25.1 | 5.2 | | NA | | 5 | U | No | | MW1 | Downgradient | 190504 | 1,1-Dichloroethane | ug/L | 14 | 24.0 | 14 | | NA | | 14 | | No | | MW1 | Downgradient | 190499 | 1,1-Dichloroethene | ug/L | 32.9 | 21.1 | 13 | | NA | | 9.7 | | No | | MW1 | Downgradient | 147907 | cis-1,2-Dichloroethene | ug/L | 250 | 295 | 170 | | NA | | 160 | | No | | MW1 | Downgradient | 190525 | Tetrachloroethene | ug/L | 45.8 | 5.6 | 5 | U | NA | | 5 | U | No | | MW1 | Downgradient | 185820 | Trichloroethene | ug/L | 340 | 324 | 11 | | NA | | 16 | | No | | MW1 | Downgradient | 185825 | Vinyl Chloride | ug/L | 48 | 10.4 | 14 | | NA | | 17 | | No | | MW2 | Downgradient | | 1,1,1-Trichloroethane | ug/L | 52.5 | 39.3 | 11 | | NA | | 10 | | No | | MW2 | Downgradient | | 1,1-Dichloroethane | ug/L | 14 | 5.4 | 5 | U | NA | | 5 | U | No | | MW2 | Downgradient | | 1,1-Dichloroethene | ug/L | 32.9 | 30.6 | 12 | | NA | | 11 | | No | | MW2 | Downgradient | 147907 | cis-1,2-Dichloroethene | ug/L | 250 | 131 | 50 | | NA | | 31 | | No | | MW2 | Downgradient | 190525 | Tetrachloroethene | ug/L | 45.8 | 23.1 | 31 | | NA | | 31 | | No | | MW2 | Downgradient | 185820 | Trichloroethene | ug/L | 340 | 293 | 170 | | NA | | 180 | | No | | MW2 | Downgradient | 185825 | Vinyl Chloride | ug/L | 48 | 10.0 | 4.2 | | NA | | 2 | U | No | | MW3 | Upgradient | 190494 | 1,1,1-Trichloroethane | ug/L | 52.5 | 45.5 | 11 | | NA | | 11 | | No | | MW3 | Upgradient | 190504 | 1,1-Dichloroethane | ug/L | 14 | 11.0 | 5 | U | NA | | 5 | U | No | | MW3 | Upgradient | | 1,1-Dichloroethene | ug/L | 32.9 | 36.3 | 11 | | NA | | 11 | | No | | MW3 | Upgradient | 147907 | cis-1,2-Dichloroethene | ug/L | 250 | 126 | 27 | | NA | | 26 | | No | | MW3 | Upgradient | 190525 | Tetrachloroethene | ug/L | 45.8 | 39.7 | 35 | | NA | | 38 | | No | | MW3 | Upgradient | 185820 | Trichloroethene | ug/L | 340 | 310 | 180 | | NA | | 200 | | No | | MW3 | Upgradient | 185825 | Vinyl Chloride | ug/L | 48 | 2.0 | 2 | U | NA | | 2 | U | No | | MW4 | Downgradient | 190494 | 1,1,1-Trichloroethane | ug/L | 52.5 | 47.2 | 8.2 | | NA | | 6.3 | | No | | MW4 | Downgradient | 190504 | 1,1-Dichloroethane | ug/L | 14 | 69.9 | 6.9 | | NA | | 15 | | No | | MW4 | Downgradient | 190499 | 1,1-Dichloroethene | ug/L | 32.9 | 33.0 | 5 | U | NA | | 5 | U | No | | MW4 | Downgradient | 147907 | cis-1,2-Dichloroethene | ug/L | 250 | 461 | 58 | | NA | | 34 | | No | | MW4 | Downgradient | 190525 | Tetrachloroethene | ug/L | 45.8 | 5.0 | 5 | U | NA | | 5 | U | No | | MW4 | Downgradient | 185820 | Trichloroethene | ug/L | 340 | 5.0 | 5 | U | NA | | 5 | U | No | | MW4 | Downgradient | 185825 | Vinyl Chloride | ug/L | 48 | 137 | 31 | | NA | | 20 | | No | | MW5 | Upgradient | | 1,1,1-Trichloroethane | ug/L | 52.5 | 78.5 | 11 | | NA | | 12 | | No | | MW5 | Upgradient | | 1,1-Dichloroethane | ug/L | 14 | 25.8 | 5.9 | | NA | | 5 | U | No | | MW5 | Upgradient | | 1,1-Dichloroethene | ug/L | 32.9 | 34.0 | 10 | | NA | | 13 | | No | | MW5 | Upgradient | 147907 | cis-1,2-Dichloroethene | ug/L | 250 | 519 | 32 | | NA | | 27 | | No | | MW5 | Upgradient | 190525 | Tetrachloroethene | ug/L | 45.8 | 75.7 | 35 | | NA | | 43 | | No | | MW5 | Upgradient | 185820 | Trichloroethene | ug/L | 340 | 390 | 130 | | NA | | 140 | | No | | MW5 | Upgradient | 185825 | Vinyl Chloride | ug/L | 48 | 15.0 | 2 | U | NA | | 2 | U | No | # December 2013 Through June 2014 Data Summary IPC/Roto-Rooter Site | | | | | | Interwell | Intrawell | Dec | :-13 | Jan | -14 | Jun | -14 | | |------|--------------|--------------|------------------------|-------|-----------|-----------|--------|------|--------|------|--------|------|-------------| | | | | | | Upper | Upper | | | | | | | Reporting | | | | | | | Limit | Limit | | | | | | | Period | | Well | Location | Parameter ID | Parameter | Units | (95%) | (99%) | Result | Qual | Result | Qual | Result | Qual | Exceedance? | | MW6 | Upgradient | 190494 | 1,1,1-Trichloroethane | ug/L | 52.5 | 71.3 | 12 | | NA | | 13 | | No | | MW6 | Upgradient | 190504 | 1,1-Dichloroethane | ug/L | 14 | 42.1 | 7.2 | | NA | | 12 | | No | | MW6 | Upgradient | 190499 | 1,1-Dichloroethene | ug/L | 32.9 | 36.5 | 10 | | NA | | 11 | | No | | MW6 | Upgradient | 147907 | cis-1,2-Dichloroethene | ug/L | 250 | 352 | 64 | | NA | | 38 | | No | | MW6 | Upgradient | 190525 | Tetrachloroethene | ug/L | 45.8 | 47.6 | 28 | | NA | | 49 | | Yes | | MW6 | Upgradient | 185820 | Trichloroethene | ug/L | 340 | 220 | 81 | | NA | | 140 | | No | | MW6 | Upgradient | 185825 | Vinyl Chloride | ug/L | 48 | 104 | 11 | | NA | | 11 | | No | | MW8 | Downgradient | 190494 | 1,1,1-Trichloroethane | ug/L | 52.5 | 30.2 | 8.4 | | NA | | 5 | U | No | | MW8 | Downgradient | 190504 | 1,1-Dichloroethane | ug/L | 14 | 34.0 | 18 | | 10 | | 8.9 | | Yes | | MW8 | Downgradient | 190499 | 1,1-Dichloroethene | ug/L | 32.9 | 14.1 | 7.2 | | NA | | 5 | U | No | | MW8 | Downgradient | 147907 | cis-1,2-Dichloroethene | ug/L | 250 | 78.2 | 36 | | NA | | 14 | | No | | MW8 | Downgradient | 190525 | Tetrachloroethene | ug/L | 45.8 | 5.0 | 11 | | NA | | 10 | | No | | MW8 | Downgradient | 185820 | Trichloroethene | ug/L | 340 | 171 | 77 | | NA | | 47 | | No | | MW8 | Downgradient | 185825 | Vinyl Chloride | ug/L | 48 | 2.0 | 2 | U | NA | | 2 | U | No | | MW9 | Downgradient | 190494 | 1,1,1-Trichloroethane | ug/L | 52.5 | 5.0 | 5 | U | NA | | 5 | U | No | | MW9 | Downgradient | 190504 | 1,1-Dichloroethane | ug/L | 14 | 5.0 | 5 | U | NA | | 5 | U | No | | MW9 | Downgradient | 190499 | 1,1-Dichloroethene | ug/L | 32.9 | 5.0 | 5 | U | NA | | 5 | U | No | | MW9 | Downgradient | 147907 | cis-1,2-Dichloroethene | ug/L | 250 | 5.0 | 7.3 | | NA | | 5 | U | No | | MW9 | Downgradient | 190525 | Tetrachloroethene | ug/L | 45.8 | 5.0 | 5 | U | NA | | 5 | U | No | | MW9 | Downgradient | 185820 | Trichloroethene | ug/L | 340 | 5.0 | 5 | U | NA | | 5 | U | No | | MW9 | Downgradient | 185825 | Vinyl Chloride | ug/L | 48 | 2.0 | 2 | U | NA | | 2 | U | No | All data reported in ug/L. NA - Not Applicable / U - Not Detected # Attachment 5 COC Concentration Time Trends # 1,1,1-Trichloroethane in Well MW01 IPC/Roto-Rooter Landfill ## 1,1-Dichloroethane in Well MW01 IPC/Roto-Rooter Landfill ## 1,1-Dichloroethene in Well MW01 IPC/Roto-Rooter Landfill ## cis-1,2-Dichloroethene in Well MW01 IPC/Roto-Rooter Landfill ## Tetrachloroethene in Well MW01 IPC/Roto-Rooter Landfill ## Trichloroethene in Well MW01 IPC/Roto-Rooter Landfill # Vinyl Chloride in Well MW01 IPC/Roto-Rooter Landfill # 1,1,1-Trichloroethane in Well MW02 IPC/Roto-Rooter Landfill ## 1,1-Dichloroethene in Well MW02 IPC/Roto-Rooter Landfill ## Tetrachloroethene in Well MW02 IPC/Roto-Rooter Landfill ## Trichloroethene in Well MW02 IPC/Roto-Rooter Landfill # Vinyl Chloride in Well MW02 IPC/Roto-Rooter Landfill # 1,1,1-Trichloroethane in Well MW03 IPC/Roto-Rooter Landfill ## 1,1-Dichloroethane in Well MW03 IPC/Roto-Rooter Landfill ## 1,1-Dichloroethene in Well MW03 IPC/Roto-Rooter Landfill ## Trichloroethene in Well MW03 IPC/Roto-Rooter Landfill ## Vinyl Chloride in Well MW03 IPC/Roto-Rooter Landfill # 1,1,1-Trichloroethane in Well MW04 IPC/Roto-Rooter Landfill # 1,1-Dichloroethane in Well MW04 IPC/Roto-Rooter Landfill ## 1,1-Dichloroethene in Well MW04 IPC/Roto-Rooter Landfill ## cis-1,2-Dichloroethene in Well MW04 IPC/Roto-Rooter Landfill ## Tetrachloroethene in Well MW04 IPC/Roto-Rooter Landfill ## Trichloroethene in Well MW04 IPC/Roto-Rooter Landfill # Vinyl Chloride in Well MW04 IPC/Roto-Rooter Landfill # 1,1,1-Trichloroethane in Well MW05 IPC/Roto-Rooter Landfill ## 1,1-Dichloroethane in Well MW05 IPC/Roto-Rooter Landfill ## 1,1-Dichloroethene in Well MW05 IPC/Roto-Rooter Landfill ## cis-1,2-Dichloroethene in Well MW05 IPC/Roto-Rooter Landfill ## Tetrachloroethene in Well MW05 IPC/Roto-Rooter Landfill ## Trichloroethene in Well MW05 IPC/Roto-Rooter Landfill ## Vinyl Chloride in Well MW05
IPC/Roto-Rooter Landfill # 1,1,1-Trichloroethane in Well MW06 IPC/Roto-Rooter Landfill ### 1,1-Dichloroethane in Well MW06 IPC/Roto-Rooter Landfill ### 1,1-Dichloroethene in Well MW06 IPC/Roto-Rooter Landfill ## cis-1,2-Dichloroethene in Well MW06 IPC/Roto-Rooter Landfill ### Tetrachloroethene in Well MW06 IPC/Roto-Rooter Landfill ### Trichloroethene in Well MW06 IPC/Roto-Rooter Landfill ## Vinyl Chloride in Well MW06 IPC/Roto-Rooter Landfill ### 1,1,1-Trichloroethane in Well MW08 IPC/Roto-Rooter Landfill ### 1,1-Dichloroethane in Well MW08 IPC/Roto-Rooter Landfill ## cis-1,2-Dichloroethene in Well MW08 IPC/Roto-Rooter Landfill ### Tetrachloroethene in Well MW08 IPC/Roto-Rooter Landfill ### Trichloroethene in Well MW08 IPC/Roto-Rooter Landfill ## Vinyl Chloride in Well MW08 IPC/Roto-Rooter Landfill #### 1,1,1-Trichloroethane in Well MW09 IPC/Roto-Rooter Landfill #### 1,1-Dichloroethane in Well MW09 IPC/Roto-Rooter Landfill #### 1,1-Dichloroethene in Well MW09 IPC/Roto-Rooter Landfill #### cis-1,2-Dichloroethene in Well MW09 IPC/Roto-Rooter Landfill #### Tetrachloroethene in Well MW09 IPC/Roto-Rooter Landfill #### Trichloroethene in Well MW09 IPC/Roto-Rooter Landfill #### Vinyl Chloride in Well MW09 IPC/Roto-Rooter Landfill # Attachment 6 **Data Validation Summaries** #### **Data Validation Checklist** | Date: | 1/2/2014 | | | | |---|---|----------|----|----| | Validator Name: | Mary Pearson (EIL) | | | | | Facility: | Interstate Pollution Control - Roto Rooter | | | | | Facility Location: | Rockford, Illinois | | | | | Event: | Dec-13 | | | | | Laboratory: | TestAmerica - Chicago | | | | | Sampling Dates: | 12/16/2013 | | | | | Laboratory Job No: | 500-68720-1 (Analysis Batch Numbers 216908 and | 216976) | | | | Were the correct analyt | tical methodologies used? | Yes | No | NA | | Were all samples analy | Yes
■ | No | NA | | | Were contaminants detected in the associated laboratory blank(s)? | | Yes | No | NA | | Were contaminants det | tected in the associated trip blank(s)? | Yes | No | NA | | Were contaminants det | tected in the associated field blank(s)? | Yes | No | NA | | Were surrogate recove | ries within the appropriate control ranges? | Yes | No | NA | | Were laboratory contro | I spikes within the appropriate control ranges? | Yes | No | NA | | Were field duplicate samples within 20% relative percent difference of the primary samples for all tested analytes? | | Yes
■ | No | NA | | Blind field duplicate (MV | W7) was collected at MW1. | | | | | Note: | | | | | Matrix Spike (MS) / Matrix Spike Duplicate (MSD) analyzed at well MW6. The MS/MSD recoveries were within the acceptance ranges for all compounds. #### Duplicate Sample Evaluation December 2013 IPC Roto-Rooter Site | | | | | | Blind Field | | | |---------------------------|-------------|-------|-----|-----------|-------------|-----------|-----| | Parameter | Sample Date | Units | MW1 | Qualifier | Duplicate | Qualifier | RPD | | 1,1,1-Trichloroethane | 12/16/2013 | ug/L | 5.2 | | 5 | U | 4% | | 1,1,2,2-Tetrachloroethane | 12/16/2013 | ug/L | 5 | U | 5 | U | 0% | | 1,1,2-Trichloroethane | 12/16/2013 | ug/L | 5 | U | 5 | U | 0% | | 1,1-Dichloroethane | 12/16/2013 | ug/L | 14 | | 13 | | 7% | | 1,1-Dichloroethene | 12/16/2013 | ug/L | 13 | | 13 | | 0% | | 1,2-Dichloroethane | 12/16/2013 | ug/L | 5 | U | 5 | U | 0% | | 1,2-Dichloropropane | 12/16/2013 | ug/L | 5 | U | 5 | U | 0% | | 2-Hexanone | 12/16/2013 | ug/L | 20 | U | 20 | U | 0% | | Acetone | 12/16/2013 | ug/L | 20 | U | 20 | U | 0% | | Benzene | 12/16/2013 | ug/L | 5 | U | 5 | U | 0% | | Bromodichloromethane | 12/16/2013 | ug/L | 5 | U | 5 | U | 0% | | Bromoform | 12/16/2013 | ug/L | 5 | U | 5 | U | 0% | | Bromomethane | 12/16/2013 | ug/L | 5 | U | 5 | U | 0% | | Carbon disulfide | 12/16/2013 | ug/L | 5 | U | 5 | U | 0% | | Carbon tetrachloride | 12/16/2013 | ug/L | 5 | U | 5 | U | 0% | | Chlorobenzene | 12/16/2013 | ug/L | 5 | U | 5 | U | 0% | | Chloroethane | 12/16/2013 | ug/L | 5 | U | 5 | U | 0% | | Chloroform | 12/16/2013 | ug/L | 5 | U | 5 | U | 0% | | Chloromethane | 12/16/2013 | ug/L | 5 | U | 5 | U | 0% | | cis-1,2-Dichloroethene | 12/16/2013 | ug/L | 170 | | 170 | | 0% | | cis-1,3-Dichloropropene | 12/16/2013 | ug/L | 5 | U | 5 | U | 0% | | Dibromochloromethane | 12/16/2013 | ug/L | 5 | U | 5 | U | 0% | | Ethylbenzene | 12/16/2013 | ug/L | 5 | U | 5 | U | 0% | | Methyl Ethyl Ketone | 12/16/2013 | ug/L | 20 | U | 20 | U | 0% | | Methyl Isobutyl Ketone | 12/16/2013 | ug/L | 20 | U | 20 | U | 0% | | Methylene Chloride | 12/16/2013 | ug/L | 10 | U | 10 | U | 0% | | Styrene | 12/16/2013 | ug/L | 5 | U | 5 | U | 0% | | Tetrachloroethene | 12/16/2013 | ug/L | 5 | U | 5 | U | 0% | | Toluene | 12/16/2013 | ug/L | 5 | U | 5 | U | 0% | | trans-1,2-Dichloroethene | 12/16/2013 | ug/L | 5 | U | 5 | U | 0% | | trans-1,3-Dichloropropene | 12/16/2013 | ug/L | 5 | U | 5 | U | 0% | | Trichloroethene | 12/16/2013 | ug/L | 11 | | 11 | | 0% | | Vinyl chloride | 12/16/2013 | ug/L | 14 | | 13 | | 7% | | Xylenes, Total | 12/16/2013 | ug/L | 5 | U | 5 | U | 0% | Qualifier U - Not Detected Chemicals of Concern are highlighted in gray. The blind field duplicate (MW7) was taken at well MW1. #### **Data Validation Checklist** | Date: | 1/16/2014 | | | | |---|--|----------|----|----| | Validator Name: | Mary Pearson (EIL) | | | | | Facility: | Interstate Pollution Control - Roto Rooter | | | | | Facility Location: | Rockford, Illinois | | | | | Event: | December 2013 Re-Sample | | | | | Laboratory: | TestAmerica - Chicago | | | | | Sampling Dates: | 1/9/2014 | | | | | Laboratory Job No: | 500-69823-1 (Analysis Batch Number 219474) | | | | | Were the correct analytical | methodologies used? | Yes | No | NA | | Were all samples analyzed | I within the VOC hold time (14 days)? | Yes
■ | No | NA | | Were contaminants detected | ed in the associated laboratory blank(s)? | Yes | No | NA | | Were contaminants detect | ed in the associated trip blank(s)? | Yes | No | NA | | Were contaminants detect | ed in the associated field blank(s)? | Yes | No | NA | | Were surrogate recoveries | within the appropriate control ranges? | Yes | No | NA | | Were laboratory control spikes within the appropriate control ranges? | | Yes | No | NA | | Were field duplicate sampl of the primary samples for | es within 20% relative percent difference all tested analytes? | Yes | No | NA | Field Duplicate Collected at MW8 #### Duplicate Sample Evaluation December 2013 Re-Sample IPC Roto-Rooter Site | | | | | | MW8 Field | | | |--------------------|-------------|-------|-----|-----------|-----------|-----------|------| | Parameter | Sample Date | Units | MW8 | Qualifier | Duplicate | Qualifier | RPD | | 1,1-Dichloroethane | 1/9/2014 | ug/L | 10 | | 11 | | 9.5% | #### **Data Validation Checklist** | Date: | 8/7/2014 | | | | |---|---|-----|----|----| | Validator Name: | Mary Pearson (EIL) | | | | | Facility: | Interstate Pollution Control - Roto Rooter | | | | | Facility Location: | Rockford, Illinois | | | | | Event: | Jun-14 | | | | | Laboratory: | TestAmerica - Chicago | | | | | Sampling Dates: | 6/23/2014 | | | | | Laboratory Job No: | 500-79349-1 (Analysis Batch Number 242572) | | | | | Were the correct analyt | tical methodologies used? | Yes | No | NA | | Were all samples analy | Yes
■ | No | NA | | | Were contaminants detected in the associated laboratory blank(s)? | | Yes | No | NA | | Were contaminants det | tected in the associated trip blank(s)? | Yes | No | NA | | Were contaminants det | tected in the associated field blank(s)? | Yes | No | NA | | Were surrogate recove | ries within the appropriate control ranges? | Yes | No | NA | | Were laboratory contro | I spikes within the appropriate control ranges? | Yes | No | NA | | Were field duplicate samples within 20% relative percent difference of the primary samples for all tested analytes? | | Yes | No | NA | | Blind field duplicate (MV | W7) was collected at MW1. | | | | | Note: | | | | | Matrix Spike (MS) / Matrix Spike Duplicate (MSD) analyzed at well MW6. The MS/MSD recoveries were within the acceptance ranges for all compounds. #### Duplicate Sample Evaluation June 2014 IPC Roto-Rooter Site | | | | | | Blind Field | | | |---------------------------|-------------|-------|-----|-----------|-------------|-----------|-----| | Parameter | Sample Date | Units | MW1 | Qualifier | Duplicate | Qualifier | RPD | | 1,1,1-Trichloroethane | 6/23/2014 | ug/L | 5 | U | 5 | U | 0% | | 1,1,2,2-Tetrachloroethane | 6/23/2014 | ug/L | 5 | U | 5 | U | 0% | | 1,1,2-Trichloroethane | 6/23/2014 | ug/L | 5 | U | 5 | U | 0% | | 1,1-Dichloroethane | 6/23/2014 | ug/L | 14 | | 14 | | 0% | | 1,1-Dichloroethene | 6/23/2014 | ug/L | 9.7 | | 9.5 | | 2% | | 1,2-Dichloroethane | 6/23/2014 | ug/L | 5 | U | 5 | U | 0% | | 1,2-Dichloropropane | 6/23/2014 | ug/L | 5 | U | 5 | U | 0% | | 2-Hexanone | 6/23/2014 | ug/L | 20 | U | 20 | U | 0% | | Acetone | 6/23/2014 | ug/L | 20 | U | 20 | U | 0% | | Benzene | 6/23/2014 | ug/L | 5 | U | 5 | U | 0% | | Bromodichloromethane | 6/23/2014 | ug/L | 5 | U | 5 | U | 0% | | Bromoform | 6/23/2014 | ug/L | 5 | U | 5 | U | 0% | | Bromomethane | 6/23/2014 | ug/L | 5 | U | 5 | U | 0% | | Carbon disulfide | 6/23/2014 | ug/L | 5 | U | 5 | U | 0% | | Carbon tetrachloride | 6/23/2014 | ug/L | 5 | U | 5 | U | 0% | | Chlorobenzene | 6/23/2014 | ug/L | 5 | U | 5 | U | 0% | | Chloroethane | 6/23/2014 | ug/L | 5 | U | 5 | U | 0% | | Chloroform | 6/23/2014 | ug/L | 5 | U | 5 | U | 0% | | Chloromethane | 6/23/2014 | ug/L | 5 | U | 5 | U |
0% | | cis-1,2-Dichloroethene | 6/23/2014 | ug/L | 160 | | 160 | | 0% | | cis-1,3-Dichloropropene | 6/23/2014 | ug/L | 5 | U | 5 | U | 0% | | Dibromochloromethane | 6/23/2014 | ug/L | 5 | U | 5 | U | 0% | | Ethylbenzene | 6/23/2014 | ug/L | 5 | U | 5 | U | 0% | | Methyl Ethyl Ketone | 6/23/2014 | ug/L | 20 | U | 20 | U | 0% | | Methyl Isobutyl Ketone | 6/23/2014 | ug/L | 20 | U | 20 | U | 0% | | Methylene Chloride | 6/23/2014 | ug/L | 10 | U | 10 | U | 0% | | Styrene | 6/23/2014 | ug/L | 5 | U | 5 | U | 0% | | Tetrachloroethene | 6/23/2014 | ug/L | 5 | U | 5 | U | 0% | | Toluene | 6/23/2014 | ug/L | 5 | U | 5 | U | 0% | | trans-1,2-Dichloroethene | 6/23/2014 | ug/L | 5 | U | 5 | U | 0% | | trans-1,3-Dichloropropene | 6/23/2014 | ug/L | 5 | U | 5 | U | 0% | | Trichloroethene | 6/23/2014 | ug/L | 16 | | 15 | | 6% | | Vinyl chloride | 6/23/2014 | ug/L | 17 | | 17 | | 0% | | Xylenes, Total | 6/23/2014 | ug/L | 5 | U | 5 | U | 0% | Qualifier U - Not Detected Chemicals of Concern are highlighted in gray. The blind field duplicate (MW7) was taken at well MW1. #### **Attachment 7** **Total VOC Load Concentration Time Trends** **Total VOCs IPC/Roto-Rooter Landfill** Downgradient Wells = MW1, MW2, MW4 --- Upgradient Wells Upgradient Wells = MW3, MW5, MW6 Difference Between Upgradient and Downgradient Total VOC Load 1,600 1,400 1,200 Concentration (ug/L) 1,000 800 600 400 200 0 Jan-10 Jan-07 Jan-08 Jan-09 Jan-11 Jan-12 Jan-13 Jan-14 Jan-15 **Sampling Date** → Downgradient Wells # Total VOCs in Well MW01 IPC/Roto-Rooter Landfill # Total VOCs in Well MW02 IPC/Roto-Rooter Landfill # Total VOCs in Well MW03 IPC/Roto-Rooter Landfill # Total VOCs in Well MW04 IPC/Roto-Rooter Landfill # Total VOCs in Well MW05 IPC/Roto-Rooter Landfill # Total VOCs in Well MW06 IPC/Roto-Rooter Landfill # Total VOCs in Well MW08 IPC/Roto-Rooter Landfill ### Total VOCs in Well MW09 IPC/Roto-Rooter Landfill #### **Attachment 8** **Total VOC Load Trends (1,1,1-TCA plus TCE only)**